Histological Evaluation of Impaction Bone Grafting in Humans and Animals

2021 ◽  
Vol 11 (4) ◽  
pp. 1906
Author(s):  
Marwa Y. Shaheen ◽  
Amani M. Basudan ◽  
Abdurahman A. Niazy ◽  
Jeroen J. J. P. van den Beucken ◽  
John A. Jansen ◽  
...  

The aim of this study was to evaluate the regeneration of bone defects created in the femoral condyle of osteoporotic rats, following intravenous (IV) zoledronate (ZA) treatment in three settings: pre-bone grafting (ZA-Pre), post-bone grafting (ZA-Post), and pre- plus post-bone grafting (ZA-Pre+Post). Twenty-four female Wistar rats were ovariectomized (OVX). After 12 weeks, bone defects were created in the left femoral condyle. All defects were grafted with a particulate inorganic cancellous bovine bone substitute. ZA (0.04 mg/kg, weekly) was administered to six rats 4 weeks pre-bone graft placement. To another six rats, ZA was given post-bone graft placement creation and continued for 6 weeks. Additional six rats received ZA treatment pre- and post-bone graft placement. Control animals received weekly saline intravenous injections. At 6 weeks post-bone graft placement, samples were retrieved for histological evaluation of the bone area percentage (BA%) and remaining bone graft percentage (RBG%). BA% for ZA-Pre (50.1 ± 3.5%) and ZA-Post (49.2 ± 8.2%) rats was significantly increased compared to that of the controls (35.4 ± 5.4%, p-value 0.031 and 0.043, respectively). In contrast, ZA-Pre+Post rats (40.7 ± 16.0%) showed similar BA% compared to saline controls (p = 0.663). For RBG%, all experimental groups showed similar results ranging from 36.3 to 47.1%. Our data indicate that pre- or post-surgical systemic IV administration of ZA improves the regeneration of bone defects grafted with inorganic cancellous bovine-bone particles in osteoporotic bone conditions. However, no favorable effect on bone repair was seen for continued pre- plus post-surgical ZA treatment.


Author(s):  
C. Fölsch ◽  
P. Sahm ◽  
C. A. Fonseca Ulloa ◽  
G. A. Krombach ◽  
M. Kampschulte ◽  
...  

AbstractAntibiotic carrier particles of variable size might influence mechanic properties within impacted thermodisinfected and native cancellous bone different. Herafill®G containing calciumsulfate and calciumcarbonate provides high local concentrations of gentamicin being important for revision surgery in infected joint replacements. Native and thermodisinfected cancellous bone derived from 6 to 7 months old piglets was used for in vitro impaction bone grafting and supplemented each with Herafill®G granules of two different sizes. Micromovement of implants related to shear force was measured in 29 specimens distributed in 6 groups. Thermodisinfected cancellous bone revealed a significant higher shear force resistance than native bone with a mean difference of 423.8 mdeg/Nm (p < 0.001) ranging within 95% confidence interval from 181.5 to 666.0 mdeg/Nm. Adding small granules to thermodisinfected bone did not reduce shear force resistance significantly since adding large granules to native bone improved it by 344.0 mdeg/Nm (p < 0.003). Shear force resistance was found higher at the distal region of the implant compared to a proximal point of measurement throughout all specimens. Less impaction impulses were necessary for thermodisinfected bone. Thermodisinfected cancellous bone might achieve a higher degree of impaction compared with native bone resulting in increased resistance against shear force since impaction was found increased distally. Supplementation of thermodisinfected bone with small granules of Herafill®G might be considered for application of local antibiotics. Large granules appeared more beneficial for supplementation of native bone. Heterogeneity of bone graft and technical aspects of the impaction procedure have to be considered regarding the reproducibility of femoral impaction bone grafting.


2000 ◽  
Vol 120 (7-8) ◽  
pp. 386-389 ◽  
Author(s):  
G. B. Flugsrud ◽  
Stein Øvre ◽  
Bjarne Grøgaard ◽  
Lars Nordsletten

Author(s):  
N. Verdonschot ◽  
P. Buma ◽  
J. Gardeniers ◽  
B.W. Schreurs

Biomaterials ◽  
2009 ◽  
Vol 30 (10) ◽  
pp. 1918-1927 ◽  
Author(s):  
David W. Green ◽  
Benjamin J.R.F. Bolland ◽  
Janos M. Kanczler ◽  
Stuart A. Lanham ◽  
Dominic Walsh ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document