native bone
Recently Published Documents


TOTAL DOCUMENTS

193
(FIVE YEARS 88)

H-INDEX

19
(FIVE YEARS 6)

2022 ◽  
Author(s):  
Junjie Xiong ◽  
Han Wang ◽  
Xingzi Lan ◽  
Yaqi Wang ◽  
Zixu Wang ◽  
...  

Abstract Many strategies have been adopted to engineer bone-ligament interface, which is of great value to both the tissue regeneration and the mechanism understanding underlying interface regeneration. However, how to recapitulate the complexity and heterogeneity of the native bone-ligament interface including the structural, cellular and mechanical gradients is still challenging. In this work, a bioinspired grid-crimp micropattern fabricated by melt electrospinning writing (MEW) was proposed to mimic the native structure of bone-ligament interface. The printing strategy of crimped fiber micropattern was developed and the processing parameters were optimized, which were used to mimic the crimp structure of the collagen fibrils in ligament. The guidance effect of the crimp angle and fiber spacing on the orientation of fibroblasts was studied, and both of them showed different levels of cell alignment effect.. MEW grid micropatterns with different fiber spacings were fabricated as bone region. Both the alkaling phosphatase activity and calcium mineralization results demonstrated the higher osteoinductive ability of the MEW grid structures, especially for that with smaller fiber spacing. The combined grid-crimp micropatterns were applied for the co-culture of fibroblasts and osteoblasts. The results showed that more cells were observed to migrate into the in-between interface region for the pattern with smaller fiber spacing, suggested the faster migration speed of cells. Finally, a cylindrical triphasic scaffold was successfully generated by rolling the grid-crimp micropatterns up, showing both structural and mechanical similarity to the native bone-ligament interface. In summary, the proposed strategy is reliable to fabricate grid-crimp triphasic micropatterns with controllable structural parameters to mimic the native bone-to-ligament structure, and the generated 3D scaffold shows great potential for the further bone-ligament interface tissue engineering.


Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 238
Author(s):  
Anton Friedmann ◽  
Stefan Fickl ◽  
Kai R. Fischer ◽  
Milad Dalloul ◽  
Werner Goetz ◽  
...  

Various biomaterial combinations have been studied focusing on their ability to stabilize blood clots and maintain space under soft tissue to support new bone formation. A popular combination is Deproteinized Bovine Bone Mineral (DBBM) placed with a native collagen membrane (NCM) tacked to native bone. In this study, we compared the outcome of this treatment option to those achieved with three different graft/membrane combinations with respect to total newly occupied area and the mineralized compound inside. After bi-lateral extraction of two mandibular premolars in five adult beagles L-shaped alveolar defects were created. A total of 20 defects healed for 6 weeks resulting in chronic type bone defects. At baseline, four options were randomly allocated to five defects each: a. DBBM + NCM with a four-pin fixation across the ridge; b. DBBM + RCLC (ribose cross-linked collagen membrane); c. DBBM + NPPM (native porcine pericardium membrane); and d. Ca-sulfate (CS) + RCLC membrane. Membranes in b/c/d were not fixed; complete tensionless wound closure was achieved by CAF. Termination after 3 months and sampling followed, and non-decalcified processing and toluidine blue staining were applied. Microscopic images obtained at standardized magnification were histomorphometrically assessed by ImageJ software (NIH). An ANOVA post hoc test was applied; histomorphometric data are presented in this paper as medians and interquartile ranges (IRs). All sites healed uneventfully, all sites were sampled and block separation followed before Technovit embedding. Two central sections per block for each group were included. Two of five specimen were lost due to processing error and were excluded from group b. New bone area was significantly greater for option b. compared to a. (p = 0.001), c. (p = 0.002), and d. (p = 0.046). Residual non-bone graft area was significantly less for option d. compared to a. (p = 0.026) or c. (p = 0.021). We conclude that collagen membranes with a prolonged resorption/barrier profile combined with bone substitutes featuring different degradation profiles sufficiently support new bone formation. Tacking strategy/membrane fixation appears redundant when using these biomaterials.


Polymers ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 18
Author(s):  
Vuk V. Filipović ◽  
Marija M. Babić Radić ◽  
Jovana S. Vuković ◽  
Marija Vukomanović ◽  
Marina Rubert ◽  
...  

New composite 3D scaffolds were developed as a combination of synthetic polymer, poly(2-hydroxyethyl methacrylate) (PHEMA), and a natural polymer, gelatin, with a ceramic component, nanohydroxyapatite (ID nHAp) dopped with metal ions. The combination of a synthetic polymer, to be able to tune the structure and the physicochemical and mechanical properties, and a natural polymer, to ensure the specific biological functions of the scaffold, with inorganic filler was applied. The goal was to make a new material with superior properties for applications in the biomedical field which mimics as closely as possible the native bone extracellular matrix (ECM). Biodegradable PHEMA hydrogel was obtained by crosslinking HEMA by poly(β-amino esters) (PBAE). The scaffold’s physicochemical and mechanical properties, in vitro degradation, and biological activity were assessed so to study the effects of the incorporation of nHAp in the (PHEMA/PBAE/gelatin) hydrogel, as well as the effect of the different pore-forming methods. Cryogels had higher elasticity, swelling, porosity, and percent of mass loss during degradation than the samples obtained by porogenation. The composite scaffolds had a higher mechanical strength, 10.14 MPa for the porogenated samples and 5.87 MPa for the cryogels, but a slightly lower degree of swelling, percent of mass loss, and porosity than the hybrid ones. All the scaffolds were nontoxic and had a high cell adhesion rate, which was 15–20% higher in the composite samples. Cell metabolic activity after 2 and 7 days of culture was higher in the composites, although not statistically different. After 28 days, cell metabolic activity was similar in all scaffolds and the TCP control. No effect of integrating nHAp into the scaffolds on osteogenic cell differentiation could be observed. Synergetic effects occurred which influenced the mechanical behavior, structure, physicochemical properties, and interactions with biological species.


2021 ◽  
Vol 11 (24) ◽  
pp. 11823
Author(s):  
Vicentiu Saceleanu ◽  
Rubén Paz ◽  
Joshua García ◽  
Yamilet Rivero ◽  
Cosmin-Nicodim Cîndea ◽  
...  

Neurosurgery is one of the medical specialties in which the practical training of students is more limiting since it requires a high degree of preparation for the interventions to be satisfactory. That is why the manufacture of synthetic models through additive manufacturing (AM) arises to develop the skills that the neurosurgeon requires. The present work is aimed at validating the use of AM for the neurosurgery training. To this regard, a meningioma case study was considered, and suitable materials and more appropriate AM technology were identified for a low-cost production of synthetic models of both skulls and brains with tumors. The skull was manufactured by material extrusion AM with two materials, a commercial composite filament composed of polylactic acid (PLA) with calcium carbonate (used in the area to be treated during the cutting process, due to its mechanical properties more comparable to those of the native bone, with 30% infill density) and standard PLA without additives (used in the rest of the model, with 20% infill density). On the other hand, different casting silicones in different proportions were tested under compression molding to find the best combination to mimic the brain and tumor. Ten synthetic models of a real-case meningioma were manufactured and used as training material by students in the neurosurgery sector, who rated the proposed training approach very highly, considering the employment of printed models as a key resource for improving their surgical skills.


2021 ◽  
Vol 9 (11) ◽  
pp. 232596712110504
Author(s):  
Stephen A. Parada ◽  
K. Aaron Shaw ◽  
Meghan E. McGee-Lawrence ◽  
Judith G. Kyrkos ◽  
Daniel W. Paré ◽  
...  

Background: Glenoid reconstruction with distal tibial allograft (DTA) is a known surgical option for treating recurrent glenohumeral instability with anterior glenoid bone loss; however, biomechanical analysis has yet to determine how graft variability and fixation options alter the torque of screw insertion and load to failure. Hypothesis: It was hypothesized that retention of the lateral cortex of the DTA graft and the presence of a washer with the screw will significantly increase the maximum screw placement torque as well as the load to failure. Study Design: Controlled laboratory study. Methods: Whole, fresh distal tibias were used to harvest 28 DTA grafts, half of which had the lateral cortex removed and half of which had the lateral cortex intact. The grafts were secured to polyurethane solid foam blocks with a 2-mm epoxy laminate to simulate a glenoid with an intact posterior glenoid cortex. Grafts underwent fixation with 4.0-mm cannulated drills, and screws and washers were used for half of each group of grafts while screws alone were used for the other half, creating 4 equal groups of 7 samples each. A digital torque-measuring screwdriver recorded peak torque for screw insertion. Constructs were then tested in compression with a uniaxial materials testing system and loaded in displacement control at 100 mm/min until at least 3 mm of displacement occurred. Ultimate load was defined as the load sustained at clinical failure. Results: The use of a washer significantly improved the ultimate torque that could be applied to the screws (+cortex and +washer = 12.42 N·m [SE, 0.82]; –cortex and +washer = 10.54 N·m [SE, 0.59]) ( P < .0001), whereas the presence of the native bone cortex did not have a significant effect (+cortex and –washer = 7.83 N·m [SE, 0.40]; –cortex and –washer = 8.03 N·m [SE, 0.56]) ( P = .181). Conclusion: In a hybrid construct of fresh cadaveric DTA grafts secured to a foam block glenoid model, the addition of washers was more effective than the retention of the lateral distal tibial cortex for both load to failure and peak torque during screw insertion. Clinical Relevance: This biomechanical study is relevant to the surgeon when choosing a graft and selecting fixation options during glenoid reconstruction with a DTA graft.


2021 ◽  
Vol 11 (10) ◽  
pp. 1011
Author(s):  
Kai-Fang Hu ◽  
Szu-Wei Lin ◽  
Ying-Chu Lin ◽  
Jiiang-Huei Jeng ◽  
Yu-Ting Huang ◽  
...  

The aim of this study was to use a cone-beam computed tomography (CBCT) to assess changes in alveolar bone width around dental implants at native and reconstructed bone sites before and after implant surgery. A total of 99 implant sites from 54 patients with at least two CBCT scans before and after implant surgery during 2010–2019 were assessed in this study. Demographic data, dental treatments and CBCT scans were collected. Horizontal alveolar bone widths around implants at three levels (subcrestal width 1 mm (CW1), subcrestal width 4 mm (CW4), and subcrestal width 7 mm (CW7)) were measured. A p-value of < 0.05 indicated statistically significant differences. The initial bone widths (mean ± standard deviation (SD)) at CW1, CW4, and CW7 were 6.98 ± 2.24, 9.97 ± 2.64, and 11.33 ± 3.00 mm, respectively, and the postsurgery widths were 6.83 ± 2.02, 9.58 ± 2.55, and 11.19 ± 2.90 mm, respectively. The change in bone width was 0.15 ± 1.74 mm at CW1, 0.39 ± 1.12 mm at CW4 (p = 0.0008), and 0.14 ± 1.05 mm at CW7. A statistically significant change in bone width was observed at only the CW4 level. Compared with those at the native bone sites, the changes in bone width around implants at reconstructed sites did not differ significantly. A significant alveolar bone width resorption was found only at the middle third on CBCT scans. No significant changes in bone width around implants were detected between native and reconstructed bone sites.


2021 ◽  
Vol 118 (40) ◽  
pp. e2114227118
Author(s):  
Andrés García-García ◽  
Thibaut Klein ◽  
Gordian Born ◽  
Morgane Hilpert ◽  
Arnaud Scherberich ◽  
...  

Human malignant hematopoietic stem and progenitor cells (HSPCs) reside in bone marrow (BM) niches, which remain challenging to explore due to limited in vivo accessibility and constraints with humanized animal models. Several in vitro systems have been established to culture patient-derived HSPCs in specific microenvironments, but they do not fully recapitulate the complex features of native bone marrow. Our group previously reported that human osteoblastic BM niches (O-N), engineered by culturing mesenchymal stromal cells within three-dimensional (3D) porous scaffolds under perfusion flow in a bioreactor system, are capable of maintaining, expanding, and functionally regulating healthy human cord blood-derived HSPCs. Here, we first demonstrate that this 3D O-N can sustain malignant CD34+ cells from acute myeloid leukemia (AML) and myeloproliferative neoplasm patients for up to 3 wk. Human malignant cells distributed in the bioreactor system mimicking the spatial distribution found in native BM tissue, where most HSPCs remain linked to the niches and mature cells are released to the circulation. Using human adipose tissue-derived stromal vascular fraction cells, we then generated a stromal-vascular niche and demonstrated that O-N and stromal-vascular niche differentially regulate leukemic UCSD-AML1 cell expansion, immunophenotype, and response to chemotherapy. The developed system offers a unique platform to investigate human leukemogenesis and response to drugs in customized environments, mimicking defined features of native hematopoietic niches and compatible with the establishment of personalized settings.


Polymers ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 3187
Author(s):  
Miguelangel Moncayo-Donoso ◽  
Gustavo A. Rico-Llanos ◽  
Diego A. Garzón-Alvarado ◽  
José Becerra ◽  
Rick Visser ◽  
...  

Although many bone substitutes have been designed and produced, the development of bone tissue engineering products that mimic the microstructural characteristics of native bone remains challenging. It has been shown that pore orientation within collagen scaffolds influences bone matrix formation by the endochondral route. In addition, that the unidirectional orientation of the scaffolds can limit the growth of blood vessels. However, a comparison between the amount of bone that can be formed in scaffolds with different pore orientations in addition to analyzing the effect of loading osteogenic and proangiogenic factors is still required. In this work we fabricated uni- and multidirectional collagen sponges and evaluated their microstructural, physicochemical, mechanical and biological characteristics. Although the porosity and average pore size of the uni- and multidirectional scaffolds was similar (94.5% vs. 97.1% and 260 µm vs. 269 µm, respectively) the unidirectional sponges had a higher tensile strength, Young’s modulus and capacity to uptake liquids than the multidirectional ones (0.271 MPa vs. 0.478 MPa, 9.623 MPa vs. 3.426 MPa and 8000% mass gain vs. 4000%, respectively). Culturing of rat bone marrow mesenchymal stem cells demonstrated that these scaffolds support cell growth and osteoblastic differentiation in the presence of BMP-2 in vitro, although the pore orientation somehow affected cell attachment and differentiation. The evaluation of the ability of the scaffolds to support bone growth when loaded with BMP-2 or BMP-2 + VEGF in an ectopic rat model showed that they both supported bone formation. Histological analysis and quantification of mineralized matrix revealed that the pore orientation of the collagen scaffolds influenced the osteogenic process.


Materials ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5308
Author(s):  
Marialucia Gallorini ◽  
Susi Zara ◽  
Alessia Ricci ◽  
Francesco Guido Mangano ◽  
Amelia Cataldi ◽  
...  

Titanium specimens have been proven to be safe and effective biomaterials in terms of their osseo-integration. To improve the bioactivity and develop customized implants titanium, the surface can be modified with selective laser melting (SLM). Moreover, the design of macro-porous structures has become popular for reaching a durable bone fixation. 3D-printed titanium (Titanium A, B, and C), were cleaned using an organic acid treatment or with electrochemical polishing, and were characterized in terms of their surface morphology using scanning electron microscopy. Next, Dental Pulp Stem Cells (DPSCs) were cultured on titanium in order to analyze their biocompatibility, cell adhesion, and osteoconductive properties. All tested specimens were biocompatible, due to the time-dependent increase of DPSC proliferation paralleled by the decrease of LDH released. Furthermore, data highlighted that the open cell form with interconnected pores of titanium A, resembling the inner structure of the native bone, allows cells to better adhere inside the specimen, being proteins related to cell adherence highly expressed. Likewise, titanium A displays more suitable osteoconductive properties, being the profile of osteogenic markers improved compared to titanium B and C. The present work has demonstrated that the inner design and post-production treatments on titanium surfaces have a dynamic influence on DPSC behavior toward adhesion and osteogenic commitment.


Sign in / Sign up

Export Citation Format

Share Document