THE DEAD-Box PROTEIN Csha IN STAPHYLOCOCCUS AUREUS CONTAINS ATP-INDEPENDENT DNA STRAND ANNEALING AND EXCHANGE ACTIVITIES

2021 ◽  
Vol 36 (06) ◽  
Author(s):  
HANH THI DIEU NGUYEN ◽  
TAN-VIET PHAM ◽  
NGOC-AN NGUYEN ◽  
GIA-BUU TRAN

DEAD-box proteins (DBPs) that are usually RNA helicases have important roles in eukaryotic and bacterial RNA metabolism. Recent studies have reported that certain prokaryotic DBPs exhibit ATP-independent nucleic acid displacement and annealing activities. We investigated one putative RNA helicase, CshA DEAD-box protein, from vancomycin-resistant Staphylococcus aureus strain Mu 50 for ATP-independent activities on nucleic acids. We herein report that CshA has two novel ATP-independent activities - annealing of complementary single-stranded DNA (ssDNA) and strand exchange on short double-stranded DNA (dsDNA). These DNA strand annealing and exchange activities are independent of Mg2+ ion or ATP binding and hydrolysis. ssDNA annealing activity as well as versatile DNA strand exchange activity of CshA suggests a possible role in dsDNA break repair processes.

2021 ◽  
Vol 44 (02) ◽  
Author(s):  
HANH THI DIEU NGUYEN ◽  
NGOC AN NGUYEN ◽  
GIA BUU TRAN ◽  
TAN VIET PHAM

DEAD-box proteins play important roles in many RNA processes ranging from RNA synthesis to RNA decay. Furthermore, it has been reported that some bacterial DEAD-box proteins known to be components of the RNA degradosome do not cleave RNA substrates directly. However, the role of DEAD-box proteins in RNA degradation is poorly understood. The present study demonstrated that the DEAD-box protein CshA from the vancomycin-resistant Staphylococcus aureus strain Mu50 possesses RNA degradation activity, ribonuclease activity. Despite having RNA-dependent ATPase activity, CshA did not exhibit RNA helicase activity in vitro. Instead, CshA catalyzed the degradation of single-stranded RNAs of various duplex RNA substrates to form blunt-end RNA products. Thus, we suggest that the ribonuclease activity of the DEAD-box protein CshA may contribute to RNA remodeling in the bacterial RNA degradosome. To our knowledge, this study is the first to report that a DEAD-box protein from a pathogenic bacterium is implicated in multiple ATP-independent activity on RNA, such as degradation.


Sign in / Sign up

Export Citation Format

Share Document