dead box
Recently Published Documents


TOTAL DOCUMENTS

1002
(FIVE YEARS 234)

H-INDEX

86
(FIVE YEARS 11)

2022 ◽  
Vol 12 ◽  
Author(s):  
Suthinee Soponpong ◽  
Piti Amparyup ◽  
Taro Kawai ◽  
Anchalee Tassanakajon

Interferon regulatory factors (IRFs) are transcription factors found in both vertebrates and invertebrates that were recently identified and found to play an important role in antiviral immunity in black tiger shrimp Penaeus monodon. In this study, we investigated the mechanism by which P. monodon IRF (PmIRF) regulates the immune-related genes downstream of the cytosolic DNA sensing pathway. Depletion of PmIRF by double-stranded RNA-mediated gene silencing significantly reduced the mRNA expression levels of the IFN-like factors PmVago1, PmVago4, and PmVago5 and antilipopolysaccharide factor 6 (ALFPm6) in shrimp. In human embryonic kidney (HEK293T) cells transfected with PmIRF or co-transfected with DEAD-box polypeptide (PmDDX41) and simulator of IFN genes (PmSTING) expression plasmids, the promoter activity of IFN-β, nuclear factor (NF-κB), and ALFPm6 was synergistically enhanced following stimulation with the nucleic acid mimics deoxyadenylic–deoxythymidylic acid sodium salt [poly(dA:dT)] and high molecular weight (HMW) polyinosinic–polycytidylic acid [poly(I:C)]. Both nucleic acid mimics also significantly induced PmSTING, PmIRF, and ALFPm6 gene expression. Co-immunoprecipitation experiments showed that PmIRF interacted with PmSTING in cells stimulated with poly(dA:dT). PmSTING, PmIRF, and PmDDX41 were localized in the cytoplasm of unstimulated HEK293T cells and PmIRF and PmDDX41 were translocated to the nucleus upon stimulation with the nucleic acid mimics while PmSTING remained in the cytoplasm. These results indicate that PmIRF transduces the pathogen signal via the PmDDX41–PmSTING DNA sensing pathway to induce downstream production of interferon-like molecules and antimicrobial peptides.


2022 ◽  
Vol 23 (2) ◽  
pp. 586
Author(s):  
Jun-Xiu Wang ◽  
En-Bo Ma ◽  
Jian-Zhen Zhang ◽  
Shu-Ping Xing

Tissue homeostasis is critical for maintaining organ shape, size, and function. The condition is regulated by the balance between the generation of new cells and the loss of senescent cells, and it involves many factors and mechanisms. The midgut, an important part of the intestinal tract, is responsible for digestion and nutrient absorption in insects. LmDDX47, the ortholog of DEAD-box helicase 47 from Locusta migratoria, is indispensable for sustaining a normal midgut in the nymphs. However, the underlying cellular and molecular mechanisms remain to be elucidated. In this study, LmDDX47 knockdown resulted in atrophy of the midgut and gastric cecum in both nymph and adult locusts. After LmDDX47 knockdown, the number of regenerative and columnar cells in the midgut was significantly reduced, and cell death was induced in columnar tissue. LmDDX47 was localized to the nucleolus; this was consistent with the reduction in 18S rRNA synthesis in the LmDDX47 knockdown group. In addition, the acetylation and crotonylation levels of midgut proteins were significantly increased. Therefore, LmDDX47 could be a key regulator of midgut homeostasis, regulating 18S rRNA synthesis as well as protein acetylation and crotonylation in the migratory locust.


Author(s):  
Norihisa Bizen ◽  
Asim K. Bepari ◽  
Li Zhou ◽  
Manabu Abe ◽  
Kenji Sakimura ◽  
...  

AbstractOlig2 is indispensable for motoneuron and oligodendrocyte fate-specification in the pMN domain of embryonic spinal cords, and also involved in the proliferation and differentiation of several cell types in the nervous system, including neural progenitor cells (NPCs) and oligodendrocytes. However, how Olig2 controls these diverse biological processes remains unclear. Here, we demonstrated that a novel Olig2-binding protein, DEAD-box helicase 20 (Ddx20), is indispensable for the survival of NPCs and oligodendrocyte progenitor cells (OPCs). A central nervous system (CNS)-specific Ddx20 conditional knockout (cKO) demonstrated apoptosis and cell cycle arrest in NPCs and OPCs, through the potentiation of the p53 pathway in DNA damage-dependent and independent manners, including SMN complex disruption and the abnormal splicing of Mdm2 mRNA. Analyzes of Olig2 null NPCs showed that Olig2 contributed to NPC proliferation through Ddx20 protein stabilization. Our findings provide novel mechanisms underlying the Olig2-mediated proliferation of NPCs, via the Ddx20-p53 axis, in the embryonic CNS.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yanan Liu ◽  
Shijie Liu ◽  
Huiying Shi ◽  
Jingyue Ma ◽  
Meng Jing ◽  
...  

Tudor staphylococcal nucleases (TSNs) are evolutionarily conserved RNA binding proteins, which include redundant TSN1 and TSN2 in Arabidopsis. It has been showed TSNs are the components of stress granules (SGs) and regulate plant growth under salt stress. In this study, we find a binding protein of TSN1, RH31, which is a DEAD-box RNA helicase (RH). Subcellular localization studies show that RH31 is mainly located in the nucleus, but under salinity, it translocates to the cytoplasm where it accumulates in cytoplasmic granules. After cycloheximide (CHX) treatment which can block the formation of SGs by interfering with mRNP homeostasis, these cytoplasmic granules disappeared. More importantly, RH31 co-localizes with SGs marker protein RBP47. RH31 deletion results in salt-hypersensitive phenotype, while RH31 overexpression causes more resistant to salt stress. In summary, we demonstrate that RH31, the TSN1 binding protein, is a component of plant SGs and participates in regulation of salt-stress tolerance in Arabidopsis.


2021 ◽  
Vol 11 ◽  
Author(s):  
Chen Zhao ◽  
Yingwei Li ◽  
Chunping Qiu ◽  
Jingying Chen ◽  
Huan Wu ◽  
...  

Ovarian carcinoma remains the most lethal gynecological carcinoma. Abnormal expression of splicing factors is closely related to the occurrence and development of tumors. The DEAD-box RNA helicases are important members of the splicing factor family. However, their role in the occurrence and progression of ovarian cancer is still unclear. In this study, we identified DEAD-box helicase 23 (DDX23) as a key DEAD-box RNA helicase in ovarian cancer using bioinformatics methods. We determined that DDX23 was upregulated in ovarian cancer and its high expression predicted poor prognosis. Functional assays indicated that DDX23 silencing significantly impeded cell proliferation/invasion in vitro and tumor growth in vivo. Mechanistically, transcriptomic analysis showed that DDX23 was involved in mRNA processing in ovarian cancer cells. Specifically, DDX23 regulated the mRNA processing of FOXM1. DDX23 silencing reduced the production of FOXM1C, the major oncogenic transcript of FOXM1 in ovarian cancer, thereby decreasing the FOXM1 protein expression and attenuating the malignant progression of ovarian cancer. Rescue assays indicated that FOXM1 was a key executor in DDX23-induced malignant phenotype of ovarian cancer. Furthermore, we confirmed that DDX23 was transcriptionally activated by the transcription factor (TF) E2F1 in ovarian cancer using luciferase reporter assays and chromatin immunoprecipitation (ChIP) assays. In conclusion, our study demonstrates that high DDX23 expression is involved in malignant behavior of ovarian cancer and DDX23 may become a potential target for precision therapy of ovarian cancer.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jing-Na Ru ◽  
Ze-Hao Hou ◽  
Lei Zheng ◽  
Qi Zhao ◽  
Feng-Zhi Wang ◽  
...  

DEAD-box RNA helicases constitute the largest subfamily of RNA helicase superfamily 2 (SF2), and play crucial roles in plant growth, development, and abiotic stress responses. Wheat is one of the most important cereal crops in worldwide, and abiotic stresses greatly restrict its production. So far, the DEAD-box RNA helicase family has yet to be characterized in wheat. Here, we performed a comprehensive genome-wide analysis of the DEAD-box RNA helicase family in wheat, including phylogenetic relationships, chromosomal distribution, duplication events, and protein motifs. A total of 141 TaDEAD-box genes were identified and found to be unevenly distributed across all 21 chromosomes. Whole genome/segmental duplication was identified as the likely main driving factor for expansion of the TaDEAD-box family. Expression patterns of the 141 TaDEAD-box genes were compared across different tissues and under abiotic stresses to identify genes to be important in growth or stress responses. TaDEAD-box57-3B was significantly up-regulated under multiple abiotic stresses, and was therefore selected for further analysis. TaDEAD-box57-3B was localized to the cytoplasm and plasma membrane. Ectopic expression of TaDEAD-box57-3B in Arabidopsis improved tolerance to drought and salt stress as measured by germination rates, root lengths, fresh weights, and survival rates. Transgenic lines also showed higher levels of proline and chlorophyll and lower levels of malonaldehyde (MDA) than WT plants in response to drought or salt stress. In response to cold stress, the transgenic lines showed significantly better growth and higher survival rates than WT plants. These results indicate that TaDEAD-box57-3B may increase tolerance to drought, salt, and cold stress in transgenic plants through regulating the degree of membrane lipid peroxidation. This study provides new insights for understanding evolution and function in the TaDEAD-box gene family.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Emil G. P. Stender ◽  
Soumik Ray ◽  
Rasmus K. Norrild ◽  
Jacob Aunstrup Larsen ◽  
Daniel Petersen ◽  
...  

AbstractLiquid-liquid phase separation or LLPS of proteins is a field of mounting importance and the value of quantitative kinetic and thermodynamic characterization of LLPS is increasingly recognized. We present a method, Capflex, which allows rapid and accurate quantification of key parameters for LLPS: Dilute phase concentration, relative droplet size distributions, and the kinetics of droplet formation and maturation into amyloid fibrils. The binding affinity between the polypeptide undergoing LLPS and LLPS-modulating compounds can also be determined. We apply Capflex to characterize the LLPS of Human DEAD-box helicase-4 and the coacervate system ssDNA/RP3. Furthermore, we study LLPS and the aberrant liquid-to-solid phase transition of α-synuclein. We quantitatively measure the decrease in dilute phase concentration as the LLPS of α-synuclein is followed by the formation of Thioflavin-T positive amyloid aggregates. The high information content, throughput and the versatility of Capflex makes it a valuable tool for characterizing biomolecular LLPS.


2021 ◽  
Author(s):  
Lunna Li ◽  
Tommaso Casalini ◽  
Paolo Arosio ◽  
Matteo Salvalaglio

Intrinsically disordered proteins (IDPs) play a key role in many biological processes, including the formation of biomolecular condensates within cells. A detailed characterization of their configurational ensemble and structure-function paradigm is crucial for understanding their biological activity and for exploiting them as building blocks in material sciences. In this work, we incorporate bias-exchange metadynamics and parallel-tempering well-tempered metadynamics with CHARMM36m and CHARMM22* to explore the structural and thermodynamic characteristics of a short archetypal disordered sequence derived from a DEAD-box protein. The conformational landscapes emerging from our simulations are largely congruent across methods and forcefields. Nevertheless, differences in fine details emerge from varying forcefield/sampling method combinations. For this protein, our analysis identifies features that help to explain the low propensity of this sequence to undergo self-association in vitro, which can be common to all force-field/sampling method combinations. Overall, our work demonstrates the importance of using multiple force-field/enhanced sampling method combinations for accurate structural and thermodynamic information in the study of general disordered proteins.


Sign in / Sign up

Export Citation Format

Share Document