scholarly journals A randomized algorithm for finding a maximum clique in the visibility graph of a simple polygon

2015 ◽  
Vol Vol. 17 no. 1 (Discrete Algorithms) ◽  
Author(s):  
Sergio Cabello ◽  
Maria Saumell

Discrete Algorithms International audience We present a randomized algorithm to compute a clique of maximum size in the visibility graph G of the vertices of a simple polygon P. The input of the problem consists of the visibility graph G, a Hamiltonian cycle describing the boundary of P, and a parameter δ∈(0,1) controlling the probability of error of the algorithm. The algorithm does not require the coordinates of the vertices of P. With probability at least 1-δ the algorithm runs in O( |E(G)|2 / ω(G) log(1/δ)) time and returns a maximum clique, where ω(G) is the number of vertices in a maximum clique in G. A deterministic variant of the algorithm takes O(|E(G)|2) time and always outputs a maximum size clique. This compares well to the best previous algorithm by Ghosh et al. (2007) for the problem, which is deterministic and runs in O(|V(G)|2 |E(G)|) time.

2015 ◽  
Vol Vol. 17 no. 1 (Discrete Algorithms) ◽  
Author(s):  
Hossein Ghasemalizadeh ◽  
Mohammadreza Razzazi

Discrete Algorithms International audience In this paper we devise some output sensitive algorithms for a problem where a set of points and a positive integer, m, are given and the goal is to cover a maximal number of these points with m disks. We introduce a parameter, ρ, as the maximum number of points that one disk can cover and we analyse the algorithms based on this parameter. At first, we solve the problem for m=1 in O(nρ) time, which improves the previous O(n2) time algorithm for this problem. Then we solve the problem for m=2 in O(nρ + 3 log ρ) time, which improves the previous O(n3 log n) algorithm for this problem. Our algorithms outperform the previous algorithms because ρ is much smaller than n in many cases. Finally, we extend the algorithm for any value of m and solve the problem in O(mnρ + (mρ)2m - 1 log mρ) time. The previous algorithm for this problem runs in O(n2m - 1 log n) time and our algorithm usually runs faster than the previous algorithm because mρ is smaller than n in many cases. We obtain output sensitive algorithms by confining the areas that we should search for the result. The techniques used in this paper may be applicable in other covering problems to obtain faster algorithms.


2007 ◽  
Vol 5 (3) ◽  
pp. 524-532 ◽  
Author(s):  
Subir Kumar Ghosh ◽  
Thomas Caton Shermer ◽  
Binay Kumar Bhattacharya ◽  
Partha Pratim Goswami

1999 ◽  
Vol Vol. 3 no. 4 ◽  
Author(s):  
Andrzej Proskurowski ◽  
Jan Arne Telle

International audience We introduce q-proper interval graphs as interval graphs with interval models in which no interval is properly contained in more than q other intervals, and also provide a forbidden induced subgraph characterization of this class of graphs. We initiate a graph-theoretic study of subgraphs of q-proper interval graphs with maximum clique size k+1 and give an equivalent characterization of these graphs by restricted path-decomposition. By allowing the parameter q to vary from 0 to k, we obtain a nested hierarchy of graph families, from graphs of bandwidth at most k to graphs of pathwidth at most k. Allowing both parameters to vary, we have an infinite lattice of graph classes ordered by containment.


2020 ◽  
Author(s):  
Shalin Shah

<p>A clique in a graph is a set of vertices that are all directly connected</p><p>to each other i.e. a complete sub-graph. A clique of the largest size is</p><p>called a maximum clique. Finding the maximum clique in a graph is an</p><p>NP-hard problem and it cannot be solved by an approximation algorithm</p><p>that returns a solution within a constant factor of the optimum. In this</p><p>work, we present a simple and very fast randomized algorithm for the</p><p>maximum clique problem. We also provide Java code of the algorithm</p><p>in our git repository. Results show that the algorithm is able to find</p><p>reasonably good solutions to some randomly chosen DIMACS benchmark</p><p>graphs. Rather than aiming for optimality, we aim to find good solutions</p><p>very fast.</p>


2020 ◽  
Author(s):  
Shalin Shah

<p>A clique in a graph is a set of vertices that are all directly connected</p><p>to each other i.e. a complete sub-graph. A clique of the largest size is</p><p>called a maximum clique. Finding the maximum clique in a graph is an</p><p>NP-hard problem and it cannot be solved by an approximation algorithm</p><p>that returns a solution within a constant factor of the optimum. In this</p><p>work, we present a simple and very fast randomized algorithm for the</p><p>maximum clique problem. We also provide Java code of the algorithm</p><p>in our git repository. Results show that the algorithm is able to find</p><p>reasonably good solutions to some randomly chosen DIMACS benchmark</p><p>graphs. Rather than aiming for optimality, we aim to find good solutions</p><p>very fast.</p>


2000 ◽  
Vol 30 (3) ◽  
pp. 847-871 ◽  
Author(s):  
Sanjiv Kapoor ◽  
S. N. Maheshwari

2015 ◽  
Vol Vol. 17 no. 1 (Discrete Algorithms) ◽  
Author(s):  
Gregory R. Maloney

Discrete Algorithms International audience A method is described for constructing, with computer assistance, planar substitution tilings that have n-fold rotational symmetry. This method uses as prototiles the set of rhombs with angles that are integer multiples of pi/n, and includes various special cases that have already been constructed by hand for low values of n. An example constructed by this method for n = 11 is exhibited; this is the first substitution tiling with elevenfold symmetry appearing in the literature.


2007 ◽  
Vol Vol. 9 no. 1 (Graph and Algorithms) ◽  
Author(s):  
Bill Rosgen ◽  
Lorna Stewart

Graphs and Algorithms International audience A graph class has few cliques if there is a polynomial bound on the number of maximal cliques contained in any member of the class. This restriction is equivalent to the requirement that any graph in the class has a polynomial sized intersection representation that satisfies the Helly property. On any such class of graphs, some problems that are NP-complete on general graphs, such as the maximum clique problem and the maximum weighted clique problem, admit polynomial time algorithms. Other problems, such as the vertex clique cover and edge clique cover problems remain NP-complete on these classes. Several classes of graphs which have few cliques are discussed, and the complexity of some partitioning and covering problems are determined for the class of all graphs which have fewer cliques than a given polynomial bound.


2009 ◽  
Vol Vol. 11 no. 1 (Graph and Algorithms) ◽  
Author(s):  
Petr Gregor ◽  
Riste Škrekovski

Graphs and Algorithms International audience In this paper, we study long cycles in induced subgraphs of hypercubes obtained by removing a given set of faulty vertices such that every two faults are distant. First, we show that every induced subgraph of Q(n) with minimum degree n - 1 contains a cycle of length at least 2(n) - 2(f) where f is the number of removed vertices. This length is the best possible when all removed vertices are from the same bipartite class of Q(n). Next, we prove that every induced subgraph of Q(n) obtained by removing vertices of some given set M of edges of Q(n) contains a Hamiltonian cycle if every two edges of M are at distance at least 3. The last result shows that the shell of every linear code with odd minimum distance at least 3 contains a Hamiltonian cycle. In all these results we obtain significantly more tolerable faulty vertices than in the previously known results. We also conjecture that every induced subgraph of Q(n) obtained by removing a balanced set of vertices with minimum distance at least 3 contains a Hamiltonian cycle.


2013 ◽  
Vol Vol. 15 no. 2 (Discrete Algorithms) ◽  
Author(s):  
Pablo Barenbaum ◽  
Verónica Becher ◽  
Alejandro Deymonnaz ◽  
Melisa Halsband ◽  
Pablo Ariel Heiber

Discrete Algorithms International audience We consider two repeat finding problems relative to sets of strings: (a) Find the largest substrings that occur in every string of a given set; (b) Find the maximal repeats in a given string that occur in no string of a given set. Our solutions are based on the suffix array construction, requiring O(m) memory, where m is the length of the longest input string, and O(n &log;m) time, where n is the the whole input size (the sum of the length of each string in the input). The most expensive part of our algorithms is the computation of several suffix arrays. We give an implementation and experimental results that evidence the efficiency of our algorithms in practice, even for very large inputs.


Sign in / Sign up

Export Citation Format

Share Document