scholarly journals Classes of graphs with restricted interval models

1999 ◽  
Vol Vol. 3 no. 4 ◽  
Author(s):  
Andrzej Proskurowski ◽  
Jan Arne Telle

International audience We introduce q-proper interval graphs as interval graphs with interval models in which no interval is properly contained in more than q other intervals, and also provide a forbidden induced subgraph characterization of this class of graphs. We initiate a graph-theoretic study of subgraphs of q-proper interval graphs with maximum clique size k+1 and give an equivalent characterization of these graphs by restricted path-decomposition. By allowing the parameter q to vary from 0 to k, we obtain a nested hierarchy of graph families, from graphs of bandwidth at most k to graphs of pathwidth at most k. Allowing both parameters to vary, we have an infinite lattice of graph classes ordered by containment.

2015 ◽  
Vol Vol. 17 no. 1 (Graph Theory) ◽  
Author(s):  
Mauricio Soto ◽  
Christopher Thraves-Caro

Graph Theory International audience In this document, we study the scope of the following graph model: each vertex is assigned to a box in ℝd and to a representative element that belongs to that box. Two vertices are connected by an edge if and only if its respective boxes contain the opposite representative element. We focus our study on the case where boxes (and therefore representative elements) associated to vertices are spread in ℝ. We give both, a combinatorial and an intersection characterization of the model. Based on these characterizations, we determine graph families that contain the model (e. g., boxicity 2 graphs) and others that the new model contains (e. g., rooted directed path). We also study the particular case where each representative element is the center of its respective box. In this particular case, we provide constructive representations for interval, block and outerplanar graphs. Finally, we show that the general and the particular model are not equivalent by constructing a graph family that separates the two cases.


2009 ◽  
Vol 309 (12) ◽  
pp. 3843-3852 ◽  
Author(s):  
Andreas Brandstädt ◽  
Van Bang Le ◽  
Dieter Rautenbach

2011 ◽  
Vol Vol. 13 no. 2 (Graph and Algorithms) ◽  
Author(s):  
Eva Jelinkova ◽  
Ondrej Suchy ◽  
Petr Hlineny ◽  
Jan Kratochvil

Graphs and Algorithms International audience Seidel's switching is a graph operation which makes a given vertex adjacent to precisely those vertices to which it was non-adjacent before, while keeping the rest of the graph unchanged. Two graphs are called switching-equivalent if one can be made isomorphic to the other by a sequence of switches. In this paper, we continue the study of computational complexity aspects of Seidel's switching, concentrating on Fixed Parameter Complexity. Among other results we show that switching to a graph with at most k edges, to a graph of maximum degree at most k, to a k-regular graph, or to a graph with minimum degree at least k are fixed parameter tractable problems, where k is the parameter. On the other hand, switching to a graph that contains a given fixed graph as an induced subgraph is W [1]-complete. We also show the NP-completeness of switching to a graph with a clique of linear size, and of switching to a graph with small number of edges. A consequence of the latter result is the NP-completeness of Maximum Likelihood Decoding of graph theoretic codes based on complete graphs.


2004 ◽  
Vol 46 (3) ◽  
pp. 217-226 ◽  
Author(s):  
Igor Ed. Zverovich ◽  
Inessa I. Zverovich

2018 ◽  
Vol 10 (01) ◽  
pp. 1850003
Author(s):  
Terry A. McKee

Define a new class of graphs by cycles of length 5 or more always having adjacent chords. This is equivalent to cycles of length 5 or more always having noncrossing chords, which is a property that has a known forbidden induced subgraph characterization. Another characterization comes from viewing the graphs in this class in contrast to distance-hereditary graphs (which are characterized by cycles of length 5 or more always having crossing chords). Moreover, the graphs in the new class are those in which every edge of every cycle [Formula: see text] of length 5 or more forms a triangle with a third vertex of [Formula: see text] (generalizing that a graph is chordal if and only if every edge of every cycle [Formula: see text] of length 4 or more forms a triangle with a third vertex of [Formula: see text]). This leads to a strategically-required subgraph characterization of the new class.


Author(s):  
Flavia Bonomo-Braberman ◽  
Guillermo Durán ◽  
Nina Pardal ◽  
Martín D. Safe

10.37236/976 ◽  
2007 ◽  
Vol 14 (1) ◽  
Author(s):  
Tomás Feder ◽  
Pavol Hell ◽  
Wing Xie

Each $m$ by $m$ symmetric matrix $M$ over $0, 1, *$, defines a partition problem, in which an input graph $G$ is to be partitioned into $m$ parts with adjacencies governed by $M$, in the sense that two distinct vertices in (possibly equal) parts $i$ and $j$ are adjacent if $M(i,j)=1$, and nonadjacent if $M(i,j)=0$. (The entry $*$ implies no restriction.) We ask which matrix partition problems admit a characterization by a finite set of forbidden induced subgraphs. We prove that matrices containing a certain two by two diagonal submatrix $S$ never have such characterizations. We then develop a recursive technique that allows us (with some extra effort) to verify that matrices without $S$ of size five or less always have a finite forbidden induced subgraph characterization. However, we exhibit a six by six matrix without $S$ which cannot be characterized by finitely many induced subgraphs. We also explore the connection between finite forbidden subgraph characterizations and related questions on the descriptive and computational complexity of matrix partition problems.


2005 ◽  
Vol DMTCS Proceedings vol. AE,... (Proceedings) ◽  
Author(s):  
Anthony Bonato ◽  
Jeannette Janssen

International audience We study infinite limits of graphs generated by the duplication model for biological networks. We prove that with probability 1, the sole nontrivial connected component of the limits is unique up to isomorphism. We describe certain infinite deterministic graphs which arise naturally from the model. We characterize the isomorphism type and induced subgraph structure of these infinite graphs using the notion of dismantlability from the theory of vertex pursuit games, and graph homomorphisms.


Sign in / Sign up

Export Citation Format

Share Document