scholarly journals The cluster and dual canonical bases of Z [x_11, ..., x_33] are equal

2010 ◽  
Vol DMTCS Proceedings vol. AN,... (Proceedings) ◽  
Author(s):  
Brendon Rhoades

International audience The polynomial ring $\mathbb{Z}[x_{11}, . . . , x_{33}]$ has a basis called the dual canonical basis whose quantization facilitates the study of representations of the quantum group $U_q(\mathfrak{sl}3(\mathbb{C}))$. On the other hand, $\mathbb{Z}[x_{11}, . . . , x_{33}]$ inherits a basis from the cluster monomial basis of a geometric model of the type $D_4$ cluster algebra. We prove that these two bases are equal. This extends work of Skandera and proves a conjecture of Fomin and Zelevinsky. This also provides an explicit factorization of the dual canonical basis elements of $\mathbb{Z}[x_{11}, . . . , x_{33}]$ into irreducible polynomials. L'anneau de polynômes $\mathbb{Z}[x_{11}, . . . , x_{33}]$ a une base appelée base duale canonique, et dont une quantification facilite l'étude des représentations du groupe quantique $U_q(\mathfrak{sl}3(\mathbb{C}))$. D'autre part, $\mathbb{Z}[x_{11}, . . . , x_{33}]$ admet une base issue de la base des monômes d'amas de l'algèbre amassée géométrique de type $D_4$. Nous montrons que ces deux bases sont égales. Ceci prolonge les travaux de Skandera et démontre une conjecture de Fomin et Zelevinsky. Ceci fournit également une factorisation explicite en polynômes irréductibles des éléments de la base duale canonique de $\mathbb{Z}[x_{11}, . . . , x_{33}]$ .

2010 ◽  
Vol Vol. 12 no. 5 (Combinatorics) ◽  
Author(s):  
Brendon Rhoades

Combinatorics International audience The polynomial ring Z[x(11), ..., x(33)] has a basis called the dual canonical basis whose quantization facilitates the study of representations of the quantum group U-q(sl(3) (C)). On the other hand, Z[x(1 1), ... , x(33)] inherits a basis from the cluster monomial basis of a geometric model of the type D-4 cluster algebra. We prove that these two bases are equal. This extends work of Skandera and proves a conjecture of Fomin and Zelevinsky.


2008 ◽  
Vol DMTCS Proceedings vol. AJ,... (Proceedings) ◽  
Author(s):  
Mark Skandera

International audience We show that the set of cluster monomials for the cluster algebra of type $D_4$ contains a basis of the $\mathbb{Z}$-module $\mathbb{Z}[x_{1,1},\ldots ,x_{3,3}]$. We also show that the transition matrices relating this cluster basis to the natural and the dual canonical bases are unitriangular and nonnegative. These results support a conjecture of Fomin and Zelevinsky on the equality of the cluster and dual canonical bases. In the event that this conjectured equality is true, our results also imply an explicit factorization of each dual canonical basis element as a product of cluster variables. Nous montrons que l'ensemble des monômes de l'algebre "cluster'' $D_4$ contient une base-$\mathbb{Z}$ pour le module $\mathbb{Z}[x_{1,1},\ldots ,x_{3,3}]$. Nous montrons aussi que les matrices transitoires qui relient cette base à la base canonique duale sont unitriangulaires. Ces résultats renforcent une conjecture de Fomin et de Zelevinsky sur l'égalité de ces deux bases. Si cette égalité s'avérait être vraie, notre résultat donnerait aussi une factorisation des éléments de la base canonique duale.


2009 ◽  
Vol DMTCS Proceedings vol. AK,... (Proceedings) ◽  
Author(s):  
Mark Skandera ◽  
Justin Lambright

International audience We show that dual canonical basis elements of the quantum polynomial ring in $n^2$ variables can be expressed as specializations of dual canonical basis elements of $0$-weight spaces of other quantum polynomial rings. Our results rely upon the natural appearance in the quantum polynomial ring of Kazhdan-Lusztig polynomials, $R$-polynomials, and certain single and double parabolic generalizations of these. Nous démontrons que des éléments de la base canonique duale de l'anneau quantique des polynômes en $n^2$ variables peuvent s'exprimer en termes des spécialisations d'éléments de la base canonique duale des espaces de poids $0$ d'autres anneaux quantiques. Nos résultats dépendent fortement de l'apparition naturelle des polynômes de Kazhdan-Lusztig, des $R$-polynômes, et de certaines généralisations simplement et doublement paraboliques de ces polynômes dans l'anneau quantique.


2009 ◽  
Vol DMTCS Proceedings vol. AK,... (Proceedings) ◽  
Author(s):  
Charles Buehrle ◽  
Mark Skandera

International audience We use the polynomial ring $\mathbb{C}[x_{1,1},\ldots,x_{n,n}]$ to modify the Kazhdan-Lusztig construction of irreducible $S_n$-modules. This modified construction produces exactly the same matrices as the original construction in [$\textit{Invent. Math}$ $\mathbf{53}$ (1979)], but does not employ the Kazhdan-Lusztig preorders. We also show that our modules are related by unitriangular transition matrices to those constructed by Clausen in [$\textit{J. Symbolic Comput.}$ $\textbf{11}$ (1991)]. This provides a $\mathbb{C}[x_{1,1},\ldots,x_{n,n}]$-analog of results of Garsia-McLarnan in [$\textit{Adv. Math.}$ $\textbf{69}$ (1988)]. Nous utilisons l'anneau $\mathbb{C}[x_{1,1},\ldots,x_{n,n}]$ pour modifier la construction Kazhdan-Lusztig des modules-$S_n$ irréductibles dans $\mathbb{C}[S_n]$. Cette construction modifiée produit exactement les mêmes matrices que la construction originale dans [$\textit{Invent. Math}$ $\mathbf{53}$ (1979)], mais sans employer les préordres de Kazhdan-Lusztig. Nous montrons aussi que nos modules sont reliés par des matrices unitriangulaires aux modules construits par Clausen dans [$\textit{J. Symbolic Comput.}$ $\textbf{11}$ (1991)]. Ce résultat donne un $\mathbb{C}[x_{1,1},\ldots,x_{n,n}]$-analogue des résultats de Garsia-McLarnan dans [$\textit{Adv. Math.}$ $\textbf{69}$ (1988)].


2014 ◽  
Vol DMTCS Proceedings vol. AT,... (Proceedings) ◽  
Author(s):  
Miriam Farber ◽  
Alexander Postnikov

International audience We discuss arrangements of equal minors in totally positive matrices. More precisely, we would like to investigate the structure of possible equalities and inequalities between the minors. We show that arrangements of equals minors of largest value are in bijection with <i>sorted sets</i>, which earlier appeared in the context of <i>alcoved polytopes</i> and Gröbner bases. Maximal arrangements of this form correspond to simplices of the alcoved triangulation of the hypersimplex; and the number of such arrangements equals the <i>Eulerian number</i>. On the other hand, we conjecture and prove in many cases that arrangements of equal minors of smallest value are exactly the <i>weakly separated sets</i>. Weakly separated sets, originally introduced by Leclerc and Zelevinsky, are closely related to the \textitpositive Grassmannian and the associated <i>cluster algebra</i>.


2008 ◽  
Vol DMTCS Proceedings vol. AJ,... (Proceedings) ◽  
Author(s):  
Brendon Rhoades

International audience We prove a collection of conjectures due to Abuzzahab-Korson-Li-Meyer, Reiner, and White regarding the cyclic sieving phenomenon as it applies to jeu-de-taquin promotion on rectangular tableaux. To do this, we use Kazhdan-Lusztig theory and a characterization of the dual canonical basis of $\mathbb{C}[x_{11}, \ldots , x_{nn}]$ due to Skandera. Afterwards, we extend our results to analyzing the fixed points of a dihedral action on rectangular tableaux generated by promotion and evacuation, suggesting a possible sieving phenomenon for dihedral groups. Finally, we give applications of this theory to cyclic sieving phenomena involving reduced words for the long elements of hyperoctohedral groups, handshake patterns, and noncrossing partitions.


2018 ◽  
Vol 70 (4) ◽  
pp. 773-803 ◽  
Author(s):  
Jie Du ◽  
Zhonghua Zhao

AbstractWe will give a representation-theoretic proof for the multiplication formula in the Ringel-Hall algebra of a cyclic quiver Δ(n). As a first application, we see immediately the existence of Hall polynomials for cyclic quivers, a fact established by J. Y. Guo and C. M. Ringel, and derive a recursive formula to compute them. We will further use the formula and the construction of a monomial basis for given by Deng, Du, and Xiao together with the double Ringel-Hall algebra realisation of the quantum loop algebra given by Deng, Du, and Fu to develop some algorithms and to compute the canonical basis for . As examples, we will show explicitly the part of the canonical basis associated with modules of Lowey length at most 2 for the quantum group .


2015 ◽  
Vol DMTCS Proceedings, 27th... (Proceedings) ◽  
Author(s):  
Anne-Sophie Gleitz

International audience Shapiro and Chekhov (2011) have introduced the notion of <i>generalised cluster algebra</i>; we focus on an example in type $C_n$. On the other hand, Chari and Pressley (1997), as well as Frenkel and Mukhin (2002), have studied the <i>restricted integral form</i> $U^{\mathtt{res}}_ε (\widehat{\mathfrak{g}})$ of a quantum affine algebra $U_q(\widehat{\mathfrak{g}})$ where $q=ε$ is a root of unity. Our main result states that the Grothendieck ring of a tensor subcategory $C_{ε^\mathbb{z}}$ of representations of $U^{\mathtt{res}}_ε (L\mathfrak{sl}_2)$ is a generalised cluster algebra of type $C_{l−1}$, where $l$ is the order of $ε^2$. We also state a conjecture for $U^{\mathtt{res}}_ε (L\mathfrak{sl}_3)$, and sketch a proof for $l=2$. Shapiro et Chekhov (2011) ont introduit la notion d'<i>algèbre amassée généralisée</i>; nous étudions un exemple en type $C_n$. Par ailleurs, Chari et Pressley (1997), ainsi que Frenkel et Mukhin (2002), ont étudié la <i>forme entière restreinte</i> $U^{\mathtt{res}}_ε (\widehat{\mathfrak{g}})$ d'une algèbre affine quantique $U_q(\widehat{\mathfrak{g}})$ où $q=ε$ est une racine de l'unité. Notre résultat principal affirme que l'anneau de Grothendieck d'une sous-catégorie tensorielle $C_{ε^\mathbb{z}}$ de représentations de $U^{\mathtt{res}}_ε (L\mathfrak{sl}_2)$ est une algèbre amassée généralisée de type $C_{l−1}$, où $l$ est l'ordre de $ε^2$. Nous conjecturons une propriété similaire pour $U^{\mathtt{res}}_ε (L\mathfrak{sl}_3)$ et donnons un aperçu de la preuve pour $l=2$.


2011 ◽  
Vol DMTCS Proceedings vol. AO,... (Proceedings) ◽  
Author(s):  
Stefan Forcey ◽  
Aaron Lauve ◽  
Frank Sottile

International audience We develop the notion of the composition of two coalgebras, which arises naturally in higher category theory and the theory of species. We prove that the composition of two cofree coalgebras is cofree and give conditions which imply that the composition is a one-sided Hopf algebra. These conditions hold when one coalgebra is a graded Hopf operad $\mathcal{D}$ and the other is a connected graded coalgebra with coalgebra map to $\mathcal{D}$. We conclude with examples of these structures, where the factor coalgebras have bases indexed by the vertices of multiplihedra, composihedra, and hypercubes. Nous développons la notion de composition de coalgèbres, qui apparaît naturellement dans la théorie des catégories d'ordre supérieur et dans la théorie des espèces. Nous montrons que la composée de deux coalgèbres colibres est colibre et nous donnons des conditions qui impliquent que la composée est une algèbre de Hopf unilatérale. Ces conditions sont valables quand l'une des coalgèbres est une opérade de Hopf graduée $\mathcal{D}$ et l'autre est une coalgèbre graduée connexe avec un morphisme vers $\mathcal{D}$. Nous concluons avec des exemples de ces structures, où les coalgèbres composées ont des bases indexées par les sommets de multiplièdres, de composièdres, et d'hypercubes.


Sign in / Sign up

Export Citation Format

Share Document