scholarly journals Fluctuations of central measures on partitions

2012 ◽  
Vol DMTCS Proceedings vol. AR,... (Proceedings) ◽  
Author(s):  
Pierre-Loïc Mèliot

International audience We study the fluctuations of models of random partitions $(\mathbb{P}_n,ω )_n ∈\mathbb{N}$ stemming from the representation theory of the infinite symmetric group. Using the theory of polynomial functions on Young diagrams, we establish a central limit theorem for the values of the irreducible characters $χ ^λ$ of the symmetric groups, with $λ$ taken randomly according to the laws $\mathbb{P}_n,ω$ . This implies a central limit theorem for the rows and columns of the random partitions, and these ``geometric'' fluctuations of our models can be recovered by relating central measures on partitions, generalized riffle shuffles, and Brownian motions conditioned to stay in a Weyl chamber. Nous étudions les fluctuations de modèles de partitions aléatoires $(\mathbb{P}_n,ω )_n ∈\mathbb{N}$ issus de la théorie des représentations du groupe symétrique infini. En utilisant la théorie des fonctions polynomiales sur les diagrammes de Young, nous établissons un théorème central limite pour les valeurs des caractères irréductibles $χ ^λ$ des groupes symétriques, avec $λ$ pris aléatoirement suivant les lois $\mathbb{P}_n,ω$ . Ceci implique un théorème central limite pour les lignes et les colonnes des partitions aléatoires, et ces fluctuations ``géométriques'' de nos modèles peuvent être retrouvées en reliant les mesures centrales sur les partitions, les battages généralisés de cartes, et les mouvements browniens conditionnés à rester dans une chambre de Weyl.

2006 ◽  
Vol DMTCS Proceedings vol. AG,... (Proceedings) ◽  
Author(s):  
Alexander Gnedin

International audience For a class of random partitions of an infinite set a de Finetti-type representation is derived, and in one special case a central limit theorem for the number of blocks is shown.


Author(s):  
Leonid V Bogachev ◽  
Zhonggen Su

We obtain the central limit theorem for fluctuations of Young diagrams around their limit shape in the bulk of the ‘spectrum’ of partitions λ ⊢ n ∈ (under the Plancherel measure), thus settling a long-standing problem posed by Logan & Shepp. Namely, under normalization growing like , the corresponding random process in the bulk is shown to converge, in the sense of finite-dimensional distributions, to a Gaussian process with independent values, while local correlations in the vicinity of each point, measured on various power scales, possess certain self-similarity. The proofs are based on the Poissonization techniques and use Costin–Lebowitz–Soshnikov's central limit theorem for determinantal random point processes. Our results admit a striking reformulation after the rotation of Young diagrams by 45°, whereby the normalization no longer depends on the location in the spectrum. In addition, we explain heuristically the link with an earlier result by Kerov on the convergence to a generalized Gaussian process.


2008 ◽  
Vol DMTCS Proceedings vol. AI,... (Proceedings) ◽  
Author(s):  
J. E. Yukich

International audience We provide an overview of stabilization methods for point processes and apply these methods to deduce a central limit theorem for statistical estimators of dimension.


2005 ◽  
Vol DMTCS Proceedings vol. AE,... (Proceedings) ◽  
Author(s):  
Ross M. Richardson ◽  
Van H. Vu ◽  
Lei Wu

International audience For convex bodies $K$ with $\mathcal{C}^2$ boundary in $\mathbb{R}^d$, we provide results on the volume of random polytopes with vertices chosen along the boundary of $K$ which we call $\textit{random inscribing polytopes}$. In particular, we prove results concerning the variance and higher moments of the volume, as well as show that the random inscribing polytopes generated by the Poisson process satisfy central limit theorem.


Sign in / Sign up

Export Citation Format

Share Document