scholarly journals Kerov’s Central Limit Theorem for the Plancherel Measure on Young Diagrams

Author(s):  
Vladimir Ivanov ◽  
Grigori Olshanski
Author(s):  
Leonid V Bogachev ◽  
Zhonggen Su

We obtain the central limit theorem for fluctuations of Young diagrams around their limit shape in the bulk of the ‘spectrum’ of partitions λ ⊢ n ∈ (under the Plancherel measure), thus settling a long-standing problem posed by Logan & Shepp. Namely, under normalization growing like , the corresponding random process in the bulk is shown to converge, in the sense of finite-dimensional distributions, to a Gaussian process with independent values, while local correlations in the vicinity of each point, measured on various power scales, possess certain self-similarity. The proofs are based on the Poissonization techniques and use Costin–Lebowitz–Soshnikov's central limit theorem for determinantal random point processes. Our results admit a striking reformulation after the rotation of Young diagrams by 45°, whereby the normalization no longer depends on the location in the spectrum. In addition, we explain heuristically the link with an earlier result by Kerov on the convergence to a generalized Gaussian process.


2012 ◽  
Vol DMTCS Proceedings vol. AR,... (Proceedings) ◽  
Author(s):  
Pierre-Loïc Mèliot

International audience We study the fluctuations of models of random partitions $(\mathbb{P}_n,ω )_n ∈\mathbb{N}$ stemming from the representation theory of the infinite symmetric group. Using the theory of polynomial functions on Young diagrams, we establish a central limit theorem for the values of the irreducible characters $χ ^λ$ of the symmetric groups, with $λ$ taken randomly according to the laws $\mathbb{P}_n,ω$ . This implies a central limit theorem for the rows and columns of the random partitions, and these ``geometric'' fluctuations of our models can be recovered by relating central measures on partitions, generalized riffle shuffles, and Brownian motions conditioned to stay in a Weyl chamber. Nous étudions les fluctuations de modèles de partitions aléatoires $(\mathbb{P}_n,ω )_n ∈\mathbb{N}$ issus de la théorie des représentations du groupe symétrique infini. En utilisant la théorie des fonctions polynomiales sur les diagrammes de Young, nous établissons un théorème central limite pour les valeurs des caractères irréductibles $χ ^λ$ des groupes symétriques, avec $λ$ pris aléatoirement suivant les lois $\mathbb{P}_n,ω$ . Ceci implique un théorème central limite pour les lignes et les colonnes des partitions aléatoires, et ces fluctuations ``géométriques'' de nos modèles peuvent être retrouvées en reliant les mesures centrales sur les partitions, les battages généralisés de cartes, et les mouvements browniens conditionnés à rester dans une chambre de Weyl.


2011 ◽  
Vol 48 (02) ◽  
pp. 366-388 ◽  
Author(s):  
Eckhard Schlemm

We consider the first passage percolation problem on the random graph with vertex set N x {0, 1}, edges joining vertices at a Euclidean distance equal to unity, and independent exponential edge weights. We provide a central limit theorem for the first passage times l n between the vertices (0, 0) and (n, 0), thus extending earlier results about the almost-sure convergence of l n / n as n → ∞. We use generating function techniques to compute the n-step transition kernels of a closely related Markov chain which can be used to explicitly calculate the asymptotic variance in the central limit theorem.


2009 ◽  
Vol 30 (5) ◽  
pp. 1343-1369 ◽  
Author(s):  
DANNY CALEGARI ◽  
KOJI FUJIWARA

AbstractA function on a discrete group is weakly combable if its discrete derivative with respect to a combing can be calculated by a finite-state automaton. A weakly combable function is bicombable if it is Lipschitz in both the left- and right-invariant word metrics. Examples of bicombable functions on word-hyperbolic groups include:(1)homomorphisms to ℤ;(2)word length with respect to a finite generating set;(3)most known explicit constructions of quasimorphisms (e.g. the Epstein–Fujiwara counting quasimorphisms).We show that bicombable functions on word-hyperbolic groups satisfy acentral limit theorem: if$\overline {\phi }_n$is the value of ϕ on a random element of word lengthn(in a certain sense), there areEandσfor which there is convergence in the sense of distribution$n^{-1/2}(\overline {\phi }_n - nE) \to N(0,\sigma )$, whereN(0,σ) denotes the normal distribution with standard deviationσ. As a corollary, we show that ifS1andS2are any two finite generating sets forG, there is an algebraic numberλ1,2depending onS1andS2such that almost every word of lengthnin theS1metric has word lengthn⋅λ1,2in theS2metric, with error of size$O(\sqrt {n})$.


Sign in / Sign up

Export Citation Format

Share Document