scholarly journals Strong Oriented Chromatic Number of Planar Graphs without Short Cycles

2008 ◽  
Vol Vol. 10 no. 1 ◽  
Author(s):  
Mickael Montassier ◽  
Pascal Ochem ◽  
Alexandre Pinlou

International audience Let M be an additive abelian group. An M-strong-oriented coloring of an oriented graph G is a mapping f from V(G) to M such that f(u) <> j(v) whenever uv is an arc in G and f(v)−f(u) <> −(f(t)−f(z)) whenever uv and zt are two arcs in G. The strong oriented chromatic number of an oriented graph is the minimal order of a group M such that G has an M-strong-oriented coloring. This notion was introduced by Nesetril and Raspaud [Ann. Inst. Fourier, 49(3):1037-1056, 1999]. We prove that the strong oriented chromatic number of oriented planar graphs without cycles of lengths 4 to 12 (resp. 4 or 6) is at most 7 (resp. 19). Moreover, for all i ≥ 4, we construct outerplanar graphs without cycles of lengths 4 to i whose oriented chromatic number is 7.

2008 ◽  
Vol Vol. 10 no. 3 (Graph and Algorithms) ◽  
Author(s):  
Gruia Călinescu ◽  
Cristina G. Fernandes

Graphs and Algorithms International audience A planar k-restricted structure is a simple graph whose blocks are planar and each has at most k vertices. Planar k-restricted structures are used by approximation algorithms for Maximum Weight Planar Subgraph, which motivates this work. The planar k-restricted ratio is the infimum, over simple planar graphs H, of the ratio of the number of edges in a maximum k-restricted structure subgraph of H to the number edges of H. We prove that, as k tends to infinity, the planar k-restricted ratio tends to 1 = 2. The same result holds for the weighted version. Our results are based on analyzing the analogous ratios for outerplanar and weighted outerplanar graphs. Here both ratios tend to 1 as k goes to infinity, and we provide good estimates of the rates of convergence, showing that they differ in the weighted from the unweighted case.


2013 ◽  
Vol Vol. 15 no. 1 (Graph and Algorithms) ◽  
Author(s):  
Aijun Dong ◽  
Guizhen Liu ◽  
Guojun Li

Graphs and Algorithms International audience Giving a planar graph G, let χ'l(G) and χ''l(G) denote the list edge chromatic number and list total chromatic number of G respectively. It is proved that if G is a planar graph without non-induced 7-cycles, then χ'l(G)≤Δ(G)+1 and χ''l(G)≤Δ(G)+2 where Δ(G)≥7.


10.37236/9938 ◽  
2021 ◽  
Vol 28 (2) ◽  
Author(s):  
Reza Naserasr ◽  
Zhouningxin Wang ◽  
Xuding Zhu

A signed graph is a pair $(G, \sigma)$, where $G$ is a graph (loops and multi edges allowed) and $\sigma: E(G) \to \{+, -\}$ is a signature which assigns to each edge of $G$ a sign. Various notions of coloring of signed graphs have been studied. In this paper, we extend circular coloring of graphs to signed graphs. Given a signed graph $(G, \sigma)$ with no positive loop, a circular $r$-coloring of $(G, \sigma)$ is an assignment $\psi$ of points of a circle of circumference $r$ to the vertices of $G$ such that for every edge $e=uv$ of $G$, if $\sigma(e)=+$, then $\psi(u)$ and $\psi(v)$ have distance at least $1$, and if $\sigma(e)=-$, then $\psi(v)$ and the antipodal of $\psi(u)$ have distance at least $1$. The circular chromatic number $\chi_c(G, \sigma)$ of a signed graph $(G, \sigma)$ is the infimum of those $r$ for which $(G, \sigma)$ admits a circular $r$-coloring. For a graph $G$, we define the signed circular chromatic number of $G$ to be $\max\{\chi_c(G, \sigma): \sigma \text{ is a signature of $G$}\}$.  We study basic properties of circular coloring of signed graphs and develop tools for calculating $\chi_c(G, \sigma)$. We explore the relation between the circular chromatic number and the signed circular chromatic number of graphs, and present bounds for the signed circular chromatic number of some families of graphs. In particular,  we determine the supremum of the signed circular chromatic number of $k$-chromatic graphs of large girth, of simple bipartite planar graphs, $d$-degenerate graphs, simple outerplanar graphs and series-parallel graphs. We construct a signed planar simple graph whose circular chromatic number is $4+\frac{2}{3}$. This is based and improves on a signed graph built by Kardos and Narboni as a counterexample to a conjecture of Máčajová, Raspaud, and Škoviera. 


2005 ◽  
Vol DMTCS Proceedings vol. AE,... (Proceedings) ◽  
Author(s):  
Pascal Ochem

International audience Raspaud and Sopena showed that the oriented chromatic number of a graph with acyclic chromatic number $k$ is at most $k2^{k-1}$. We prove that this bound is tight for $k \geq 3$. We also show that some improper and/or acyclic colorings are $\mathrm{NP}$-complete on a class $\mathcal{C}$ of planar graphs. We try to get the most restrictive conditions on the class $\mathcal{C}$, such as having large girth and small maximum degree. In particular, we obtain the $\mathrm{NP}$-completeness of $3$-$\mathrm{ACYCLIC \space COLORABILITY}$ on bipartite planar graphs with maximum degree $4$, and of $4$-$\mathrm{ACYCLIC \space COLORABILITY}$ on bipartite planar graphs with maximum degree $8$.


2004 ◽  
Vol Vol. 6 no. 2 ◽  
Author(s):  
Vida Dujmović ◽  
Attila Pór ◽  
David R. Wood

International audience A \emph(k,t)-track layout of a graph G consists of a (proper) vertex t-colouring of G, a total order of each vertex colour class, and a (non-proper) edge k-colouring such that between each pair of colour classes no two monochromatic edges cross. This structure has recently arisen in the study of three-dimensional graph drawings. This paper presents the beginnings of a theory of track layouts. First we determine the maximum number of edges in a (k,t)-track layout, and show how to colour the edges given fixed linear orderings of the vertex colour classes. We then describe methods for the manipulation of track layouts. For example, we show how to decrease the number of edge colours in a track layout at the expense of increasing the number of tracks, and vice versa. We then study the relationship between track layouts and other models of graph layout, namely stack and queue layouts, and geometric thickness. One of our principle results is that the queue-number and track-number of a graph are tied, in the sense that one is bounded by a function of the other. As corollaries we prove that acyclic chromatic number is bounded by both queue-number and stack-number. Finally we consider track layouts of planar graphs. While it is an open problem whether planar graphs have bounded track-number, we prove bounds on the track-number of outerplanar graphs, and give the best known lower bound on the track-number of planar graphs.\


2005 ◽  
Vol DMTCS Proceedings vol. AE,... (Proceedings) ◽  
Author(s):  
Louis Esperet ◽  
Mickael Montassier ◽  
André Raspaud

International audience A proper vertex coloring of a non oriented graph $G=(V,E)$ is linear if the graph induced by the vertices of two color classes is a forest of paths. A graph $G$ is $L$-list colorable if for a given list assignment $L=\{L(v): v∈V\}$, there exists a proper coloring $c$ of $G$ such that $c(v)∈L(v)$ for all $v∈V$. If $G$ is $L$-list colorable for every list assignment with $|L(v)|≥k$ for all $v∈V$, then $G$ is said $k$-choosable. A graph is said to be lineary $k$-choosable if the coloring obtained is linear. In this paper, we investigate the linear choosability of graphs for some families of graphs: graphs with small maximum degree, with given maximum average degree, planar graphs... Moreover, we prove that determining whether a bipartite subcubic planar graph is lineary 3-colorable is an NP-complete problem.


2011 ◽  
Vol Vol. 13 no. 3 (Graph and Algorithms) ◽  
Author(s):  
Min Chen ◽  
André Raspaud ◽  
Weifan Wang

Graphs and Algorithms International audience A proper vertex coloring of a graphGis called a star-coloring if there is no path on four vertices assigned to two colors. The graph G is L-star-colorable if for a given list assignment L there is a star-coloring c such that c(v) epsilon L(v). If G is L-star-colorable for any list assignment L with vertical bar L(v)vertical bar \textgreater= k for all v epsilon V(G), then G is called k-star-choosable. The star list chromatic number of G, denoted by X-s(l)(G), is the smallest integer k such that G is k-star-choosable. In this article, we prove that every graph G with maximum average degree less than 3 is 8-star-choosable. This extends a result that planar graphs of girth at least 6 are 8-star-choosable [A. Kundgen, C. Timmons, Star coloring planar graphs from small lists, J. Graph Theory, 63(4): 324-337, 2010].


2004 ◽  
Vol 281 (1-3) ◽  
pp. 209-219 ◽  
Author(s):  
Wenjie He ◽  
Jiaojiao Wu ◽  
Xuding Zhu

2020 ◽  
Vol 12 (03) ◽  
pp. 2050034
Author(s):  
Yuehua Bu ◽  
Xiaofang Wang

A [Formula: see text]-hued coloring of a graph [Formula: see text] is a proper [Formula: see text]-coloring [Formula: see text] such that [Formula: see text] for any vertex [Formula: see text]. The [Formula: see text]-hued chromatic number of [Formula: see text], written [Formula: see text], is the minimum integer [Formula: see text] such that [Formula: see text] has a [Formula: see text]-hued coloring. In this paper, we show that [Formula: see text] if [Formula: see text] and [Formula: see text] is a planar graph without [Formula: see text]-cycles or if [Formula: see text] is a planar graph without [Formula: see text]-cycles and no [Formula: see text]-cycle is intersect with [Formula: see text]-cycles, [Formula: see text], then [Formula: see text], where [Formula: see text].


2003 ◽  
Vol Vol. 6 no. 1 ◽  
Author(s):  
Brice Effantin ◽  
Hamamache Kheddouci

International audience The b-chromatic number of a graph G is defined as the maximum number k of colors that can be used to color the vertices of G, such that we obtain a proper coloring and each color i, with 1 ≤ i≤ k, has at least one representant x_i adjacent to a vertex of every color j, 1 ≤ j ≠ i ≤ k. In this paper, we discuss the b-chromatic number of some power graphs. We give the exact value of the b-chromatic number of power paths and power complete binary trees, and we bound the b-chromatic number of power cycles.


Sign in / Sign up

Export Citation Format

Share Document