scholarly journals Major Ion Chemistry and Groundwater Quality Assessment for Drinking and Irrigation Purpose in Parts of Noyyal Basin, Tamil Nadu, India

2020 ◽  
Author(s):  
Kom Karung Phaisonreng ◽  
B. Gurugnanam
2019 ◽  
Vol 20 (1) ◽  
pp. 335-347 ◽  
Author(s):  
Yingzhi Li ◽  
Jiutan Liu ◽  
Zongjun Gao ◽  
Min Wang ◽  
Leqi Yu

Abstract Shigaze city is situated in the southwestern Tibetan Plateau and is the second largest city in the Tibet Autonomous Region. Groundwater is the major source of domestic and drinking water for urban inhabitants. In this study, the major ion chemistry and a water quality assessment of groundwater were studied using geochemical methods and fuzzy comprehensive assessment. Groundwater was classified as slightly alkaline soft and hard freshwater, and the influence of anthropogenic activities on groundwater was relatively weak. The dominant cations and anions were Ca2+ and Mg2+ and HCO3− and SO42−, respectively. Overall, the mean concentrations of major ions in groundwater increase gradually over time, except for NO3−; however, the mean value of pH decreases over time. Most groundwater samples belong to the type of HCO3-Ca, and the groundwater has a trend of evolution from HCO3-Ca to the mixed type. Rock weathering was the main hydrogeochemical process controlling groundwater hydrochemistry, and the dissolution of carbonate and silicate minerals were the primary contributors to the formation of the major ion chemistry of groundwater. Major ions of groundwater in the urban area of Shigaze are below the standard limits, and the groundwater is excellent for drinking according to the fuzzy comprehensive assessment.


2015 ◽  
Vol 124 (6) ◽  
pp. 1293-1309 ◽  
Author(s):  
Chinmaya Maharana ◽  
Sandeep Kumar Gautam ◽  
Abhay Kumar Singh ◽  
Jayant K Tripathi

2018 ◽  
Vol 7 (3.34) ◽  
pp. 72
Author(s):  
D Sivakumar ◽  
S Govindasami ◽  
B Raghul Raj ◽  
C Gowdham ◽  
V M. Ragothaman

The study focused to assess the groundwater in Madhavaram, Chennai, Tamil Nadu, for irrigational purposes. Irrigation indices like SAR, SSP, PI and KR was determined in each groundwater sample to identify its irrigational suitability. This study further envisaged that these groundwater aquifers have low Sodium adsorption ratio and hence groundwater is fit for irrigation, while residual sodium bicarbonate and Kelly’s ratio values indicated that majority of these aquifer have water of marginal to harmful quality against irrigation. The dominance pattern of cations in the studied ground water was in the order of Na > Ca > Mg > K and the sequence of anionic dominance was as follows: Cl > HCO3 > SO4. All 20 wells fall under the excellent category of SAR. SSP values of groundwater range from 49 to 71 and indicated that 15 wells are under permissible and 5 wells are under doubtful classification.  PI value indicated that groundwater is unsuitable against irrigation.  The KR indicated that groundwater quality in 18 wells is not fit for irrigation.  Hence, necessary pre-treatment methodology is to be adopted for utilizing groundwater for irrigation purpose. 


2012 ◽  
Vol 6 (11) ◽  
pp. 4179-4189 ◽  
Author(s):  
N. S. Magesh ◽  
S. Krishnakumar ◽  
N. Chandrasekar ◽  
John Prince Soundranayagam

Sign in / Sign up

Export Citation Format

Share Document