drinking and irrigation
Recently Published Documents


TOTAL DOCUMENTS

194
(FIVE YEARS 98)

H-INDEX

19
(FIVE YEARS 6)

2022 ◽  
Vol 9 ◽  
Author(s):  
Mohd Yawar Ali Khan ◽  
Mohamed El Kashouty ◽  
Waleed Gusti ◽  
Amit Kumar ◽  
Ali Mohammad Subyani ◽  
...  

Seawater has intruded into many of Saudi Arabia’s Red Sea coastal aquifers, with varying degrees of extension depending on location, hydrogeology, and population density. This study aimed to evaluate and comprehend the processes that influence the hydrogeochemical characteristics of the coastal aquifer in Saudi Arabia’s Khulais region. Groundwater samples were taken from nineteen locations during the winter and summer of 2021, and data from major ions and trace elements were examined and interpreted using ArcGIS software. The total dissolved solids (TDS) concentrations ranged between 480 and 15,236 mg/L and 887–18,620 mg/L in winter and summer, respectively. Groundwater TDS concentration was observed to be influenced by groundwater flow, lithogenic, anthropogenic, and seawater intrusion in this study (2021) when compared to 2016. The concentration of nitrate (NO3−) and strontium (Sr) in most samples exceeds the drinking guidelines. The occurrence of high concentrations of bromide (Br), Fluoride (F), Iron (Fe) (winter and summer) and Aluminum (Al), Boron (B), Chromium (Cr), Nickel (Ni), lead (Pb), cadmium (Cd), cobalt (Co), copper (Cu) and manganese (Mn) (winter) was also exhibited and observed up to more than drinking and irrigation limits. The central part of the study area was affected by seawater intrusion. The hydraulic conductivity of the topsoil was measured, and it ranged from 0.24 to 29.3 m/day. Based on electrical conductivity (EC) and sodium absorption ratio, most aquifer samples were unsuitable for irrigation (SAR).


2022 ◽  
Vol 9 (2) ◽  
pp. 3367-3377
Author(s):  
Arefegn Arota ◽  
Abunu Atlabachew ◽  
Abel Abebe ◽  
Muralitharan Jothimani

When groundwater quality is good, it may be a substantial water supply for various applications. However, no systematic research on hydrogeochemistry and water quality features for drinking and irrigation has been undertaken in the present study area. As a result, the current study looked at hydrogeochemical variables and groundwater quality for drinking and irrigation in Tercha district, Dawuro Zone, Southern Ethiopia. Forty-seven groundwater samples were collected and tested to satisfy the required target for various physicochemical properties. The hydrogeochemical features of the groundwater in the study region were assessed using in-situ testing and laboratory analysis of physicochemical parameters. Groundwater samples from the research region were slightly acidic to slightly basic, with the principal cations and anions decreasing in sequence: Na+ > Ca2+ > Mg2+ > K+ and HCO3-> Cl-> SO42-. The hadrochemical facies of the studied region evolved from mildly mineralized dominant highland Ca-HCO3 water types to moderately mineralized mixed Ca-Na-HCO3 water types to highly mineralized deep rift floor Na-HCO3 water types. Additionally, the World Health Organization and the Ethiopian Standard Agency were utilized to compare the drinking water quality. Except for NO3- (4.25 %), Fe (8.51 %), and F- (2.12%), all groundwater samples from the research region were determined to be within permitted limits and appropriate for drinking. According to the Water Quality Index, about 80.86% of groundwater samples are excellent, and 19.14% are good drinking water. Sodium absorption ratio (SAR), sodium (Na) percentage, residual sodium carbonate RSC, permeability index (PI), and magnesium hazard were among the irrigation water quality indicators calculated (MH). The great majority of groundwater samples are suitable for agricultural use.


2021 ◽  
Vol 3 (4) ◽  
Author(s):  
Hafizullah Rasouli

This groundwater research is carried out groundwater quality in Jabal Sarage and Charikar Districts. The main objective of this research is to find out natural causes of drinking water contaminations (toxic elements and components), that are leaching from soluble arrangement of rocks,sediments and soil by surface water at the infiltration time, toward the groundwater. For completion this research I used two categories of water analysis; one is areal analysis, and another is laboratory analysis. In areal analysis ten wells have been recovered by this research in Jabal Sarage and Charikar Distracts, a number of Electro-Conductivity, water temperature,dissolved oxygen in water, Total Dissolved Soled (TDS) and the Resolved Salt in Water (SSW), determination Partible ground at areal complete. For laboratory works I used chemical device of Spectra- photo model. From comparing mean of chemical and physical parameters with standards.pH, K, Na, Mg, Cl, Fe, F, TH, Ca and SO4 all are normal and we can use them for drinking and irrigation waters. The challenges that I faced during this research are; absence of research in this area and lack of geological equipment’s.


Author(s):  
Tasnim Abdary Anonna ◽  
Zia Ahmed ◽  
Rafiul Alam ◽  
Md. Masud Karim ◽  
Zhixiao Xie ◽  
...  

Author(s):  
M. H. Ali ◽  
M. H. Zaman ◽  
M. A. Islam ◽  
P. Biswas ◽  
N. N. Karim ◽  
...  

The study was conducted for assessing water quality for drinking and irrigation purposes of groundwater sources. Total 50 water samples were collected from different locations of Nachol and Niamatpurupazilla of Chapainawabgonj and Naogaon district in January 2019 and January 2020. Water quality parameters like pH, electrical conductivity (Ec), iron (Fe), manganese (Mn), calcium (Ca), magnesium (Mg), zinc (Zn), copper (Cu), sodium (Na), potassium (K), total hardness (TH), alkalinity, sulphate (SO4), nitrate (NO3), nitrite (NO2), ammonia (NH4), phosphate (PO4), chloride (Cl), dissolved oxygen (DO), and total dissolved solids (TDS) were analyzed in the laboratory. All the analyzed parameters were compared with national and international drinking and irrigation water quality standards to understand the overall groundwater quality status of the study area. The study showed that the water samples of almost all the locations were suitable for consumption and irrigation.


2021 ◽  
Vol 11 (11) ◽  
Author(s):  
Raj Setia ◽  
Shaveta Lamba ◽  
Shard Chander ◽  
Vinod Kumar ◽  
Randhir Singh ◽  
...  

AbstractThe spatial and temporal variations in the hydrochemistry of the Sutlej river in the Indian Punjab were studied based on water quality parameters analysed during pre- and post-monsoon seasons of the years 2017 and 2018. The grab water samples were collected from the river using stratified random sampling and analysed for pH, electrical conductivity (EC), carbonate (CO3−2), bicarbonate (HCO3−), chloride (Cl−), nitrate (NO3−), total hardness, calcium (Ca+2), sodium (Na+) and potassium (K+) using standard methods. Spatio-temporal variations in the parameters used to evaluate the water quality for irrigation (electrical conductivity (EC), residual sodium carbonate (RSC) and sodium absorption ratio (SAR)) were also studied. In order to rate the composite influence of all the physicochemical parameters, water quality index (WQI) was computed. Spatial variations in WQI for drinking and irrigation purposes were studied using the inverse distance weighted method in GIS. Results showed that the river water was alkaline in nature, HCO3− and Cl− are the major anions, and Ca2+ and Na+ are the cations in the river water during both seasons. The regression analysis of EC with cations and anions showed that the regression coefficient was mainly significant with Ca2+ and HCO3−, irrespective of the season. The concentration of ions was not significantly affected by season, but it was higher along transboundary of the river. Total alkalinity of water was significantly (p < 0.05) higher during pre-monsoon than post-monsoon season. The EC, SAR and RSC values during different seasons showed that  > 85% of the water samples were in good categories for irrigation purposes. According to grades of WQI for drinking purposes, the poor WQI was observed in 3.6%, 3.7% and 5.9% of the samples during pre-2017, pre-2018 and post-monsoon 2018, respectively. The poor water quality index for irrigation purposes was observed in 16.7% and 4.7% of the samples during pre-monsoon 2017 and 2018, respectively. The water quality index values for drinking and irrigation were higher (poor water quality) along transboundary of the river. The ratio of Ca2+/Mg2+, (Na+ + K+)/TZ+ and Ca2+ + Mg2+/(Na+ + K+) indicated both carbonate and silicate lithology contribute to hydrochemistry of the river besides anthropogenic factors. Non-metric multidimensional scaling showed that all the samples are of a similar origin across the river including transboundary, whereas cluster analysis resulted in the two main groups: pH and Cl in the one group, and EC along with the remaining cations and anions in the other group during pre-monsoon, but pH in the one group, and EC along with the remaining cations and anions in the other group during post-monsoon. The high concentration of Cl− is a signature of anthropogenic inputs in addition to the contribution of natural factors. These results suggest that the cultivation of crops on the soils along transboundary may cause the transfer of ions through the food chain to human beings affecting their health. Moreover, drinking of river water by inhabitants living along transboundary may affect their health.


Sign in / Sign up

Export Citation Format

Share Document