Fishery Resources, Environment, and Conservation in the Mississippi and Yangtze (Changjiang) River Basins

<em>Abstract</em>.—This chapter provides a listing of fishes known to be present in the Mississippi River from the headwaters at Lake Itasca, Minnesota to the Gulf of Mexico terminus. A total of 188 species are presently known from the Mississippi River, including 3 diadromous species and 17 nonnative species that have established self-sustaining populations in one or more reaches of the Mississippi River. Species are classified into three relative abundance categories and noted as residents, peripherals, introduced (established nonnatives), or strays (introduced but not established). The diversity of fishes varies longitudinally with 78 species in the reach from the headwaters to St. Anthony Falls; 113 and 105 species in the upper (Upper St. Anthony Lock and Dam to Pool 13) and lower (Pools 14–26) impounded reaches, respectively; and 121 and 136 species in the upper (Missouri River confluence to Ohio River confluence) and lower (Ohio River to the Gulf of Mexico outlet) free-flowing reaches, respectively. Although the composition of the Mississippi River fish fauna has changed little despite more than 80 years of habitat alteration, the extirpation of five species in individual reaches of the river may be a forewarning of a system losing resiliency and indicate the need for habitat conservation and rehabilitation to conserve the biodiversity of North America’s largest river.

2016 ◽  
Author(s):  
Michael W. Henson ◽  
Jordan Hanssen ◽  
Greg Spooner ◽  
Patrick Fleming ◽  
Markus Pukonen ◽  
...  

AbstractDraining 31 states and roughly 3 million km2, the Mississippi River (MSR) and its tributaries constitute an essential resource to millions of people for clean drinking water, transportation, agriculture, and industry. Since the turn of the 20thcentury, MSR water quality has continually rated poorly due to human activity. Acting as first responders, microorganisms can mitigate, exacerbate, and/or serve as predictors for water quality, yet we know little about their community structure or ecology at the whole river scale for large rivers. We collected both biological (16S and 18S rRNA gene amplicons) and physicochemical data from 38 MSR sites over nearly 3000 km from Minnesota to the Gulf of Mexico. Our results revealed a microbial community composed of similar taxa to other rivers but with unique trends in the relative abundance patterns among phyla, OTUs, and the core microbiome. Furthermore, we observed a separation in microbial communities that mirrored the transition from an 8thto 10thStrahler order river at the Missouri River confluence, marking a different start to the lower MSR than the historical distinction at the Ohio River confluence in Cairo, IL. Within MSR microbial assemblages we identified subgroups of OTUs from the phyla Acidobacteria, Bacteroidetes, Oomycetes, and Heterokonts that were associated with, and predictive of, the important eutrophication nutrients nitrate and phosphate. This study offers the most comprehensive view of MSR microbiota to date, provides important groundwork for higher resolution microbial studies of river perturbation, and identifies potential microbial indicators of river health related to eutrophication.


<em>Abstract</em>.—Bighead Carp <em>Hypophthalmichthys nobilis </em>and Silver Carp <em>H. molitrix </em>are native in the Yangtze River and extremely important economically and culturally as food fishes; however, the two species have declined due to overfishing and anthropogenic modifications to hydrology and water quality. Bighead Carp and Silver Carp were imported to North America in the early 1970s, escaped confinement, and have now become undesirable and problematic invasive species. The two carps have become the most abundant fish species in many portions of their invaded range, which continues to expand. We compare the biology, status, and management of these species between their natal range in the Yangtze River and their invaded habitats of the Mississippi River basin.


2018 ◽  
Author(s):  
Yongping Yuan ◽  
Ruoyu Wang ◽  
Ellen Cooter ◽  
Limei Ran ◽  
Prasad Daggupati ◽  
...  

Abstract. This study describes and implements an integrated, multimedia, process-based system-level approach to estimating nitrogen (N) fate and transport in large river basins. The modeling system includes the following components: 1) Community Multi-Scale Air Quality (CMAQ); 2) Water Research and Forecasting (WRF); 3) Environmental Policy Integrated Climate (EPIC); and 4) Soil and Water Assessment Tool (SWAT). The previously developed Fertilizer Emission Scenario Tool for the Community Multiscale Air Quality (FEST-C) system integrated EPIC with the WRF model and CMAQ. FEST-C, driven by process-based WRF weather simulations, includes atmospheric N additions to agricultural cropland, and agricultural cropland contributions to ammonia emissions. Watershed hydrology and water quality models need to be integrated with the system (FEST-C), however, so it can be used in large river basins to address impacts of fertilization, meteorology, and atmospheric N deposition on water quality. Objectives of this paper are to describe how to expand the previous effort by integrating a watershed model with the FEST-C (CMAQ/WRF/EPIC) modeling system, as well as demonstrate application of the Integrated Modeling System (IMS) to the Mississippi River Basin (MRB) to simulate streamflow and dissolved N loadings to the Gulf of Mexico (GOM). IMS simulation results generally agree with USGS observations/estimations; the annual simulated streamflow is 218.9 mm and USGS observation is 211.1 mm and the annual simulated dissolved N is 2.1 kg/ha. and the USGS estimation is 2.8 kg/ha. Integrating SWAT with the CMAQ/WRF/EPIC modeling system allows for its use within large river basins without losing EPIC’s more detailed biogeochemistry processes, which will strengthen assessment of impacts of future climate scenarios, regulatory and voluntary programs for nitrogen oxide air emissions, and land use and land management on N transport and transformation in large river basins.


Sign in / Sign up

Export Citation Format

Share Document