18s rrna gene
Recently Published Documents


TOTAL DOCUMENTS

680
(FIVE YEARS 229)

H-INDEX

50
(FIVE YEARS 6)

Pathogens ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 106
Author(s):  
Marcos Rogério André ◽  
Ana Cláudia Calchi ◽  
Maria Eduarda Chiaradia Furquim ◽  
Isabela de Andrade ◽  
Paulo Vitor Cadina Arantes ◽  
...  

Even though the epidemiology of tick-borne agents (TBA) in dogs has been extensively investigated around the world, the occurrence, vectors involved, and molecular identity of these agents in cats remains elusive in many regions. Among TBA, Ehrlichia, Anaplasma, Babesia, Cytauxzoon, and Hepatozoon are responsible for diseases with non-specific clinical signs in cats, making essential the use of molecular techniques for accurate diagnosis and proper treatment. The present work aimed to investigate the occurrence and molecular identity of tick-borne agents (Ehrlichia, Anaplasma, Babesia/Theileria, Cytauxzoon, and Hepatozoon) in cats from southeastern (states of São Paulo (SP) and Minas Gerais (MG)) and northern (state of Rondônia (RO)) Brazil. For this purpose, 390 blood samples were collected from domiciled cats in MG (n = 155), SP (n = 151), and RO(n = 84) states, submitted to DNA extraction and PCR assays for Ehrlichia spp. (dsb gene), Anaplasma spp. (rrs gene), piroplasmids (18S rRNA gene), and Hepatozoon spp. (18S rRNA gene), sequencing, and phylogenetic inferences. The overall positivity for Anaplasma spp., Ehrlichia spp., Babesia/Theileria spp., Cytauxzoon spp., and Hepatozoon spp. were 7.4% (12.3% (MG) and 6.6% (SP)), 2% (4.5% (MG) and 0.6% (SP)), 0.7% (0.6% (MG), 0.6% (SP) and 1.2% (RO)), 27.2% (41.9% (MG), 24.5% (SP) and 4.8% (RO), and 0%, respectively. The phylogenetic analysis grouped the obtained sequences with ‘Candidatus Anaplasma amazonensis’, A. platys, B. vogeli, and Cytauxzoon sp. previously detected in wild felids from Brazil. qPCR specific for E. canis based on the dsb gene confirmed the molecular identity of the detected ehrlichial agent. The present study expanded the list and geographical distribution of hemoparasites in cats. ‘Candidatus Anaplasma amazonensis’, recently detected in sloths from northern Brazil, was described for the first time in cats. This is the first report of piroplasmids infecting cats in northern Brazil. Coinfection by Cytauxzoon and other TBA (Ehrlichia, Anaplasma, and B. vogeli) reported in the present study raises the need for veterinary practitioners’ awareness of cats parasitized by multiple TBA.


2022 ◽  
Vol 15 (1) ◽  
Author(s):  
Artur Trzebny ◽  
Justyna Liberska ◽  
Anna Slodkowicz-Kowalska ◽  
Miroslawa Dabert

Abstract Background Microsporidia is a large group of eukaryotic obligate intracellular spore-forming parasites, of which 17 species can cause microsporidiosis in humans. Most human-infecting microsporidians belong to the genera Enterocytozoon and Encephalitozoon. To date, only five microsporidian species, including Encephalitozoon-like, have been found in hard ticks (Ixodidae) using microscopic methods, but no sequence data are available for them. Furthermore, no widespread screening for microsporidian-infected ticks based on DNA analysis has been carried out to date. Thus, in this study, we applied a recently developed DNA metabarcoding method for efficient microsporidian DNA identification to assess the role of ticks as potential vectors of microsporidian species causing diseases in humans. Methods In total, 1070 (493 juvenile and 577 adult) unfed host-seeking Ixodes ricinus ticks collected at urban parks in the city of Poznan, Poland, and 94 engorged tick females fed on dogs and cats were screened for microsporidian DNA. Microsporidians were detected by PCR amplification and sequencing of the hypervariable V5 region of 18S rRNA gene (18S profiling) using the microsporidian-specific primer set. Tick species were identified morphologically and confirmed by amplification and sequencing of the shortened fragment of cytochrome c oxidase subunit I gene (mini-COI). Results All collected ticks were unambiguously assigned to I. ricinus. Potentially zoonotic Encephalitozoon intestinalis was identified in three fed ticks (3.2%) collected from three different dogs. In eight unfed host-seeking ticks (0.8%), including three males (1.1%), two females (0.7%) and three nymphs (0.7%), the new microsporidian sequence representing a species belonging to the genus Endoreticulatus was identified. Conclusions The lack of zoonotic microsporidians in host-seeking ticks suggests that I. ricinus is not involved in transmission of human-infecting microsporidians. Moreover, a very low occurrence of the other microsporidian species in both fed and host-seeking ticks implies that mechanisms exist to defend ticks against infection with these parasites. Graphical abstract


Author(s):  
Reza Gheitasi ◽  
Fariba Keramat ◽  
Sara Khosravi ◽  
Mehrdad Hajilooi ◽  
Mathias W. Pletz ◽  
...  

ObjectiveBrucellosis is a common bacterial zoonotic infection, and greater than half a million new cases are diagnosed annually. This study investigates the expression of Th2 and Th17 immunity-related factors (Th2-LCR lncRNA, IL-25, TRAF3IP2, and IL-17RB) in different stages of Brucella infections.Material and MethodsIn total, 99 brucellosis patients were divided into three groups (acute = first infection before treatment, relapse = before treatment, and treated = after treatment for 6–8 weeks with doxycycline and rifampin). Thirty-three healthy volunteers represented the control group. Gene expression levels were assessed by quantitative amplification in reference to the 18S rRNA gene and statistically evaluated.ResultsNo significant differences in the expression of these genes were observed between the control group and patients after completion of antibiotic treatment. Compared to these two groups, only Th2-LCR lncRNA and TRAF3IP2 were significantly more highly expressed in the acute group. Th2-LCR lncRNA was also significantly elevated in the relapse group. TRAF3IP2 expression was additionally significantly increased in the acute group compared to the relapse group.ConclusionIL-25 and IL-17RB failed to differentiate between the infected and noninfected groups. TRAF3IP2 and Th2-LCR lncRNA might be good indicators of brucellosis during the acute phase, but the expression levels varied strongly among patients. To verify the suitability of these factors as an indicator for brucellosis, acute infection or relapse should be investigated in further studies on larger cohorts with well-defined inclusion criteria.


2022 ◽  
Vol 12 ◽  
Author(s):  
Elizabeth A. Suter ◽  
Maria Pachiadaki ◽  
Gordon T. Taylor ◽  
Virginia P. Edgcomb

Oxygen-depleted water columns (ODWCs) host a diverse community of eukaryotic protists that change dramatically in composition over the oxic-anoxic gradient. In the permanently anoxic Cariaco Basin, peaks in eukaryotic diversity occurred in layers where dark microbial activity (chemoautotrophy and heterotrophy) were highest, suggesting a link between prokaryotic activity and trophic associations with protists. Using 18S rRNA gene sequencing, parasites and especially the obligate parasitic clade, Syndiniales, appear to be particularly abundant, suggesting parasitism is an important, but overlooked interaction in ODWC food webs. Syndiniales were also associated with certain prokaryotic groups that are often found in ODWCs, including Marinimicrobia and Marine Group II archaea, evocative of feedbacks between parasitic infection events, release of organic matter, and prokaryotic assimilative activity. In a network analysis that included all three domains of life, bacterial and archaeal taxa were putative bottleneck and hub species, while a large proportion of edges were connected to eukaryotic nodes. Inclusion of parasites resulted in a more complex network with longer path lengths between members. Together, these results suggest that protists, and especially protistan parasites, play an important role in maintaining microbial food web complexity, particularly in ODWCs, where protist diversity and microbial productivity are high, but energy resources are limited relative to euphotic waters.


2022 ◽  
pp. 1-13
Author(s):  
Isabel Damas-Moreira ◽  
João P. Maia ◽  
Beatriz Tomé ◽  
Daniele Salvi ◽  
Ana Perera ◽  
...  

Abstract Assessment of parasites and their pathogenicity is essential for studying the ecology of populations and understanding their dynamics. In this study, we investigate the prevalence and intensity of infection of haemogregarines (phylum Apicomplexa) in two sympatric lizard species, Podarcis vaucheri and Scelarcis perspicillata, across three localities in Morocco, and their effect on host immune response. We used the Phytohaemagglutinin (PHA) skin testing technique to relate the level of immune response with parasite infection. Prevalence and intensity levels were estimated with microscopy, and 18S rRNA gene sequences were used to confirm parasite identity. All parasites belong to the haemogregarine lineage found in other North African reptiles. There were differences in prevalence between localities and sexes. Overall, infected lizards were larger than uninfected ones, although we did not detect differences in parasitaemia across species, sex or locality. The swelling response was not related to the presence or number of haemogregarines, or to host body size, body condition, sex or species. We found no evidence of impact for these parasites on the circulating blood cells or the hosts’ immune system, but more data is needed to assess the potential impact of mixed infections, and the possibility of cryptic parasite species.


2021 ◽  
Vol 169 (1) ◽  
Author(s):  
Lucía Díaz-Abad ◽  
Natassia Bacco-Mannina ◽  
Fernando Miguel Madeira ◽  
João Neiva ◽  
Tania Aires ◽  
...  

AbstractUnderstanding sea turtle diets can help conservation planning, but their trophic ecology is complex due to life history characteristics such as ontogenetic shifts and large foraging ranges. Studying sea turtle diet is challenging, particularly where ecological foraging observations are not possible. Here, we test a new minimally invasive method for the identification of diet items in sea turtles. We fingerprinted diet content using DNA from esophageal and cloacal swab samples by metabarcoding the 18S rRNA gene. This approach was tested on samples collected from green turtles (Chelonia mydas) from a juvenile foraging aggregation in the Bijagós archipelago in Guinea-Bissau. Esophagus samples (n = 6) exhibited a higher dietary richness (11 ± 5 amplicon sequence variants (ASVs) per sample; average ± SD) than cloacal ones (n = 5; 8 ± 2 ASVs). Overall, the diet was dominated by red macroalgae (Rhodophyta; 48.2 ± 16.3% of all ASVs), with the main food item in the esophagus and cloaca being a red alga belonging to the Rhodymeniophycidae subclass (35.1 ± 27.2%), followed by diatoms (Bacillariophyceae; 7.5 ± 7.3%), which were presumably consumed incidentally. Seagrass and some invertebrates were also present. Feeding on red algae was corroborated by field observations and barcoding of food items available in the benthic habitat, validating the approach for identifying diet content. We conclude that identification of food items using metabarcoding of esophageal swabs is useful for a better understanding of the relationships between the feeding behavior of sea turtles and their environment.


Zootaxa ◽  
2021 ◽  
Vol 5081 (1) ◽  
pp. 116-130
Author(s):  
BRIAN W. BAHDER ◽  
MARCO A. ZUMBADO ECHAVARRIA ◽  
EDWIN A. BARRANTES BARRANTES ◽  
ERICKA E. HELMICK ◽  
CHARLES R. BARTLETT

The derbid genus Oropuna is a small taxon of Neotropical planthoppers in the tribe Cenchreini comprised of three species. Recent survey work on palms for planthoppers in Costa Rica resulted in the discovery of a fourth species, Oropuna halo sp. n. In this study the new species is described and a key to the four species is provided along with sequence data for the cyctochrome c oxidase subunit I (COI) and 18S rRNA gene for the novel taxon.  


Diversity ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 647
Author(s):  
Cassandra Koga ◽  
Greg W. Rouse

Stomatopoda, commonly known as mantis shrimps, are notable for their enlarged second maxillipeds encompassing the raptorial claw. The form of the claw can be used to divide them into two basic groups: smashers and spearers. Previous phylogenetic studies of Stomatopoda have focused on morphology or a few genes, though there have been whole mitochondrial genomes published for 15 members of Stomatopoda. However, the sampling has been somewhat limited with key taxa not included. Here, nine additional stomatopod mitochondrial genomes were generated and combined with the other available mitogenomes for a phylogenetic analysis. We used the 13 protein coding genes, as well as 12S rRNA, 16S rRNA genes, and included nuclear 18S rRNA gene sequences. Different rooting options were used for the analyses: (1) single and multiple outgroups from various eumalocostracan relatives and (2) a stomatopod-only dataset, with Hemisquilla californiensis used to root the topologies, based on the current hypothesis that Hemisquilla is the sister group to the rest of Stomatopoda. The eumalocostracan-rooted analyses all showed H. californiensis nested within Stomatopoda, raising doubts as to previous hypotheses as to its placement. Allowing for the rooting difference, the H. californiensis outgroup datasets had the same tree topology as the eumalocostracan outgroup datasets with slight variation at poorly supported nodes. Of the major taxonomic groupings sampled to date, Squilloidea was generally found to be monophyletic while Gonodactyloidea was not. The position of H. californiensis was found inside its superfamily, Gonodactyloidea, and grouped in a weakly supported clade containing Odontodactylus havanensis and Lysiosquillina maculata for the eumalocostracan-rooted datasets. An ancestral state reconstruction was performed on the raptorial claw form and provides support that spearing is the ancestral state for extant Stomatopoda, with smashing evolving subsequently one or more times.


Sign in / Sign up

Export Citation Format

Share Document