scholarly journals STEADY-STATE THERMAL STRESS ANALYSIS OF GEARBOX CASING BY FINITE ELEMENT METHOD

Author(s):  
P. D. PATEL ◽  
D. S. SHAH

This paper contains the gearbox casing analysis by finite element method (FEM). In previous study the thermal stresses have been affected on the performance of gearbox casing during the running conditions. So, this problem solve by thermal stress analysis method. Thermal stress analysis is the process of analyzing the effect of thermal and mechanical loads, and heat transfer of gearbox casing. In this paper, thermal stresses have been analyzed on gearbox casing, and thus temperature field has been coupled to the 3-Dimensional structure model using Fem. Paper also describes convection effect between the inner-surface of casing and the circulating oil which has been found small and thus neglected. Study of equivalent von-mises stresses in inner and outer gearbox casing with the coupled method has been done using ANSYS software. Result shows thermal stress analysis and deformation value under the action of force and heat. Result finds the thermal stress of the gearbox casing is 68.866 Mpa and 0.15434 mm for the deformation of the gearbox casing.

1987 ◽  
Vol 109 (1) ◽  
pp. 40-46 ◽  
Author(s):  
J. G. Crose ◽  
R. L. Holman ◽  
N. J. Pagano

The thermal stress analysis of thermally degrading tape wound phenolic composites in rocket nozzles is complicated by the extreme variation of properties with temperature, combined with steep temperature gradients on the order of 50,000° F/in. This study applied two very different numerical approaches to the same problem of predicting thermal stresses in a moderately thick conical frustum. One method uses a variational theorem derived by Reissner while the other applies the classical finite element method based on minimization of the total potential energy. The good agreement of the two methods appears to validate the results and an extensive convergence study is presented that identifies the magnitude of errors in the finite element method as a function of element density. A modification to the finite element method to account for intra-element material property variation is shown to improve the convergence of the procedure.


Author(s):  
Kunihiko Kawasaki ◽  
Tomoyoshi Shoji ◽  
Koichi Hatakeyama ◽  
Yuji Abe ◽  
Noboru Yoshimura

Sign in / Sign up

Export Citation Format

Share Document