scholarly journals Achieving Optimal Degrees of Freedom for an Interference Network with General Message Demand

2018 ◽  
Vol 8 (4) ◽  
pp. 3141-3148
Author(s):  
Z. Samadi ◽  
V. T. Vakili ◽  
F. Haddadi

The concept of degrees of freedom (DoF) has been adopted to resolve the difficulty of studying the multi-user wireless network capacity regions. Interference alignment (IA) is an important technique developed recently for quantifying the DoF of such networks. In the present study, a single-hop interference network with K transmitters and N receivers is taken into account. Each transmitter emits an independent message and each receiver requests an arbitrary subset of the messages. Using the linear IA techniques, the optimal DoF assignment has been analyzed. Assuming generic channel coefficients, it has been shown that the perfect IA cannot be achieved for a broad class of interference networks. Analytical evaluation of DoF feasibility for general interference channels (IFCs) is complicated and not available yet. Iterative algorithm designed to minimize the leakage interference at each receiver is extended to work with general IFCs. This algorithm provides numerical insights into the feasibility of IA, which is not yet available in theory.

Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2459
Author(s):  
Rubén Tena Sánchez ◽  
Fernando Rodríguez Varela ◽  
Lars J. Foged ◽  
Manuel Sierra Castañer

Phase reconstruction is in general a non-trivial problem when it comes to devices where the reference is not accessible. A non-convex iterative optimization algorithm is proposed in this paper in order to reconstruct the phase in reference-less spherical multiprobe measurement systems based on a rotating arch of probes. The algorithm is based on the reconstruction of the phases of self-transmitting devices in multiprobe systems by taking advantage of the on-axis top probe of the arch. One of the limitations of the top probe solution is that when rotating the measurement system arch, the relative phase between probes is lost. This paper proposes a solution to this problem by developing an optimization iterative algorithm that uses partial knowledge of relative phase between probes. The iterative algorithm is based on linear combinations of signals when the relative phase is known. Phase substitution and modal filtering are implemented in order to avoid local minima and make the algorithm converge. Several noise-free examples are presented and the results of the iterative algorithm analyzed. The number of linear combinations used is far below the square of the degrees of freedom of the non-linear problem, which is compensated by a proper initial guess. With respect to noisy measurements, the top probe method will introduce uncertainties for different azimuth and elevation positions of the arch. This is modelled by considering the real noise model of a low-cost receiver and the results demonstrate the good accuracy of the method. Numerical results on antenna measurements are also presented. Due to the numerical complexity of the algorithm, it is limited to electrically small- or medium-size problems.


Sensors ◽  
2018 ◽  
Vol 18 (8) ◽  
pp. 2548 ◽  
Author(s):  
Run Tian ◽  
Lin Ma ◽  
Zhe Wang ◽  
Xuezhi Tan

This paper considers interference management and capacity improvement for Internet of Things (IoT) oriented two-tier networks by exploiting cognition between network tiers with interference alignment (IA). More specifically, we target our efforts on the next generation two-tier networks, where a tier of femtocell serving multiple IoT devices shares the licensed spectrum with a tier of pre-existing macrocell via a cognitive radio. Aiming to manage the cross-tier interference caused by cognitive spectrum sharing as well as ensure an optimal capacity of the femtocell, two novel self-organizing cognitive IA schemes are proposed. First, we propose an interference nulling based cognitive IA scheme. In such a scheme, both co-tier and cross-tier interferences are aligned into the orthogonal subspace at each IoT receiver, which means all the interference can be perfectly eliminated without causing any performance degradation on the macrocell. However, it is known that the interference nulling based IA algorithm achieves its optimum only in high signal to noise ratio (SNR) scenarios, where the noise power is negligible. Consequently, when the imposed interference-free constraint on the femtocell can be relaxed, we also present a partial cognitive IA scheme that further enhances the network performance under a low and intermediate SNR. Additionally, the feasibility conditions and capacity analyses of the proposed schemes are provided. Both theoretical and numerical results demonstrate that the proposed cognitive IA schemes outperform the traditional orthogonal precoding methods in terms of network capacity, while preserving for macrocell users the desired quality of service.


Sign in / Sign up

Export Citation Format

Share Document