scholarly journals Two-dimensional Numerical Estimation of Stress Intensity Factors and Crack Propagation in Linear Elastic Analysis

2013 ◽  
Vol 3 (5) ◽  
pp. 506-510
Author(s):  
A. Boulenouar ◽  
N. Benseddiq ◽  
M. Mazari

When the loading or the geometry of a structure is not symmetrical about the crack axis, rupture occurs in mixed mode loading and the crack does not propagate in a straight line. It is then necessary to use kinking criteria to determine the new direction of crack propagation. The aim of this work is to present a numerical modeling of crack propagation under mixed mode loading conditions. This work is based on the implementation of the displacement extrapolation method in a FE code and the strain energy density theory in a finite element code. At each crack increment length, the kinking angle is evaluated as a function of stress intensity factors. In this paper, we analyzed the mechanical behavior of inclined cracks by evaluating the stress intensity factors. Then, we presented the examples of crack propagation in structures containing inclusions and cavities.

2007 ◽  
Vol 348-349 ◽  
pp. 585-588
Author(s):  
Henning Schütte ◽  
Kianoush Molla-Abbasi

The aim of the presentation is to highlight the influence of the kink, developing at the beginning of mixed-mode crack growth, on the propagation behavior of the crack. Le et al. [1] have shown that the variational principle of a body containing a crack results in the principle of maximum energy release rate incorporating the stress intensity factors of the kinked crack. Here the influence of the kink and the kinking angle, resulting in a singular field around the corner, on the crack growth is analyzed. The generalized stress intensity factors at the kinks corner are computed with the help of a FEM strategy. The influence of these on the T-stresses and the plastic energy dissipated at the kink is determined using a small scale yielding approach. The impact of these results on mixed-mode crack propagation is discussed.


Sign in / Sign up

Export Citation Format

Share Document