scholarly journals On the largest analytic set for cyclic operators

2003 ◽  
Vol 2003 (30) ◽  
pp. 1899-1909
Author(s):  
A. Bourhim

We describe the set of analytic bounded point evaluations for an arbitrary cyclic bounded linear operatorTon a Hilbert spaceℋ; some related consequences are discussed. Furthermore, we show that two densely similar cyclic Banach-space operators possessing Bishop's property(β)have equal approximate point spectra.

2003 ◽  
Vol 4 (2) ◽  
pp. 301
Author(s):  
A. Bourhim

<p>In this talk, to be given at a conference at Seconda Università degli Studi di Napoli in September 2001, we shall describe the set of analytic bounded point evaluations for an arbitrary cyclic bounded linear operator T on a Hilbert space H and shall answer some questions due to L. R. Williams.</p>


1968 ◽  
Vol 9 (2) ◽  
pp. 106-110 ◽  
Author(s):  
T. A. Gillespie ◽  
T. T. West

A Riesz operator is a bounded linear operator on a Banach space which possesses a Riesz spectral theory. These operators have been studied in [5] and [6]. In §2 of this paper we characterise Riesz operators in terms of their resolvent operators. In [6] it was shown that every Riesz operator on a Hilbert space can be decomposed into the sum of compact and quasi-nilpotent parts. §3 contains an example to show that these parts cannot, in general, be chosen to commute. In §4 the eigenset of a Riesz operator is defined. It is a sequence of quadruples each of which consists of an eigenvalue, the corresponding spectral projection, index and nilpotent part. This sequence satisfies certain obvious conditions, and the question arises of the existence of a Riesz operator which has such a sequence as its eigenset. We give an example of an eigenset which has no corresponding Riesz operator.


1989 ◽  
Vol 31 (1) ◽  
pp. 71-72
Author(s):  
J. E. Jamison ◽  
Pei-Kee Lin

Let X be a complex Banach space. For any bounded linear operator T on X, the (spatial) numerical range of T is denned as the setIf V(T) ⊆ R, then T is called hermitian. Vidav and Palmer (see Theorem 6 of [3, p. 78] proved that if the set {H + iK:H and K are hermitian} contains all operators, then X is a Hilbert space. It is natural to ask the following question.


1970 ◽  
Vol 22 (5) ◽  
pp. 994-996 ◽  
Author(s):  
J. G. Stampfli

This note is an addendum to my earlier paper [8]. The class of adjoint abelian operators discussed there was small because the compatibility relation between the operator and the duality map was too restrictive. (In effect, the relation is appropriate for Hilbert space, but ill-suited for other Banach spaces where the unit ball is not round.) However, the techniques introduced in [8] permit us to readily obtain a spectral theory (of the Dunford type) for a wider class of operators on Banach spaces, as we shall show.A duality system for the operator T is an ordered sextuple(i) T is a bounded linear operator mapping the Banach space B into B,(ii) ϕ is a duality map from B to B*. Thus, for x ∊ B, ϕ(x) = x* ∊ B*, where ‖x‖ = ‖x*‖ and x*(x) = ‖x‖2. The existence of ϕ follows easily from the Hahn-Banach Theorem.


1977 ◽  
Vol 18 (1) ◽  
pp. 13-15 ◽  
Author(s):  
P. G. Spain

Each bounded linear operator a on a Hilbert space K has a hermitian left-support projection p such that and (1 – p)K = ker α* = ker αα*. I demonstrate here that certain operators on Banach spaces also have left supports.Throughout this paper X will be a complex Banach space with norm-dual X', and L(X) will be the Banach algebra of bounded linear operators on X. Two linear subspaces Y and Z of X are orthogonal (in the sense of G. Birkhoff) if ∥ y ∥ ≦ ∥ y + z ∥ (y ∈Y, z ∈ Z); this orthogonality relation is not, in general, symmetric. It is easy to see that pX is orthogonal to (1 – p)X if and only if the norm of p is 0 or 1, when p is a projection on X.


1985 ◽  
Vol 37 (5) ◽  
pp. 908-920
Author(s):  
A. D. Andrew

1. In this paper, we investigate the ranges of projections on certain Banach spaces of functions defined on a diadic tree. The notion of a “tree-like” Banach space is due to James 4], who used it to construct the separable space JT which has nonseparable dual and yet does not contain l1. This idea has proved useful. In [3], Hagler constructed a hereditarily c0 tree space, HT, and Schechtman [6] constructed, for each 1 ≦ p ≦ ∞, a reflexive Banach space, STp with a 1-unconditional basis which does not contain lp yet is uniformly isomorphic to for each n.In [1] we showed that if U is a bounded linear operator on JT, then there exists a subspace W ⊂ JT, isomorphic to JT such that either U or (1 — U) acts as an isomorphism on W and UW or (1 — U)W is complemented in JT. In this paper, we establish this result for the Hagler and Schechtman tree spaces.


1991 ◽  
Vol 14 (3) ◽  
pp. 611-614 ◽  
Author(s):  
James R. Holub

It is shown that ifXis a uniformly convex Banach space andSa bounded linear operator onXfor which‖I−S‖=1, thenSis invertible if and only if‖I−12S‖<1. From this it follows that ifSis invertible onXthen either (i)dist(I,[S])<1, or (ii)0is the unique best approximation toIfrom[S], a natural (partial) converse to the well-known sufficient condition for invertibility thatdist(I,[S])<1.


2007 ◽  
Vol 49 (1) ◽  
pp. 145-154
Author(s):  
BRUCE A. BARNES

Abstract.LetTbe a bounded linear operator on a Banach spaceW, assumeWandYare in normed duality, and assume thatThas adjointT†relative toY. In this paper, conditions are given that imply that for all λ≠0, λ−Tand λ −T†maintain important standard operator relationships. For example, under the conditions given, λ −Thas closed range if, and only if, λ −T†has closed range.These general results are shown to apply to certain classes of integral operators acting on spaces of continuous functions.


CAUCHY ◽  
2017 ◽  
Vol 4 (4) ◽  
pp. 167
Author(s):  
Minanur Rohman

<p class="AbstractCxSpFirst">In this paper, we will discuss some applications of almost surjective epsilon-isometry mapping, one of them is in Lorentz space ( L_(p,q)-space). Furthermore, using some classical theorems of w star-topology and concept of closed subspace -complemented, for every almost surjective epsilon-isometry mapping  <em>f </em>: <em>X to</em><em> Y</em>, where <em>Y</em> is a reflexive Banach space, then there exists a bounded linear operator   <em>T</em> : <em>Y to</em><em> X</em>  with  such that</p><p class="AbstractCxSpMiddle">  </p><p class="AbstractCxSpLast">for every x in X.</p>


2014 ◽  
Vol 30 (1) ◽  
pp. 31-37
Author(s):  
H. A. ATIA ◽  
◽  

Our goal in this work is to study the separation problem for the Grushin differential operator formed by ... in the Banach space H1(R2), where the potential Q(x, y) ∈ L(1), is a bounded linear operator which transforms at 1 in value of (x, y).


Sign in / Sign up

Export Citation Format

Share Document