scholarly journals Reutilización de software en la robótica industrial: un mapeo sistemático

Author(s):  
A. Solis ◽  
J. Hurtado

<p>Existe una tendencia a utilizar los enfoques de reutilización de software en el dominio de los sistemas robóticos industriales, con el fin de acelerar su desarrollo. Aunque algunos estudios muestran los beneficios de desarrollar usando diferentes enfoques de reutilización, estas prácticas no se han incorporado masivamente en la industria, principalmente, debido al desarrollo de software propietario por parte de los fabricantes y a la diversidad del hardware subyacente. Sin embargo, estos estudios han sido de gran valor para avanzar en su adopción. A través de un mapeo sistemático de la literatura, se muestra la adopción de los diferentes enfoques de reutilización, dentro de los cuales se analizan los más utilizados como la ingeniería dirigida por modelos MDE (Model-Driven Engineering), el desarrollo basado en componentes CBSE (Component-based Software Engineering) y la arquitectura basada en servicios (SOA). Por otro lado, se analizan los marcos de trabajo por ser las soluciones más utilizados y en términos de herramientas, se enfatiza en ROS (Robot Operating System) como una plataforma de referencia para el desarrollo rápido de aplicaciones. El principal reto identificado en esta área de estudio es definir estrategias combinadas y prácticas de los enfoques de reutilización MDE, CBSE y SOA, con el fin de aprovechar las diferentes ventajas de reutilización que cada uno ofrece.</p>

2020 ◽  
Vol 2 (1) ◽  
pp. 1-23
Author(s):  
Nadia Hammoudeh Garcia

Ten years after its rst release, the Robot Operating System (ROS) is arguably the most popular software framework used to pro- gram robots. It achieved such status despite its shortcomings compared to alternatives similarly centered on manual programming and, perhaps surprisingly, to model-driven engineering (MDE) approaches. Based on our experience, we identied possible ways to leverage the accessibility of ROS and its large software ecosystem, while providing quality assurance measures through selected MDE techniques. After describing our vision on how to combine MDE and manually written code, we present the rst technical contribution in this pursuit: a family of three metamodels to respectively model ROS nodes, communication interfaces, and sys- tems. Such metamodels can be used, through the accompanying Eclipse- based tooling made publicly available, to model ROS systems of arbitrary complexity and generate with correctness guarantees the software arti- facts for their composition and deployment. Furthermore, they account for specications on these aspects by the Object Management Group (OMG), in order to be amenable to hybrid systems coupling ROS and other frameworks. We also report on our experience with a large and complex corpus of ROS software including the shortcomings of standard ROS tools and of previous eorts on ROS modeling.


Author(s):  
Luis Costa ◽  
Neil Loughran ◽  
Roy Grønmo

Model-driven software engineering (MDE) has the basic assumption that the development of software systems from high-level abstractions along with the generation of low-level implementation code can improve the quality of the systems and at the same time reduce costs and improve time to market. This chapter provides an overview of MDE, state of the art approaches, standards, resources, and tools that support different aspects of model-driven software engineering: language development, modeling services, and real-time applications. The chapter concludes with a reflection over the main challenges faced by projects using the current MDE technologies, pointing out some promising directions for future developments.


Author(s):  
Justinas Janulevicius ◽  
Simona Ramanauskaite ◽  
Nikolaj Goranin ◽  
Antanas Cenys

Model-Driven Engineering uses models in various stages of the software engineering. To reduce the cost of modelling and production, models are reused by transforming. Therefore the accuracy of model transformations plays a key role in ensuring the quality of the process. However, problems exist when trying to transform a very abstract and content dependent model. This paper describes the issues arising from such transformations. Solutions to solve problems in content based model transformation are proposed as well. The usage of proposed solutions allowing realization of semi-automatic transformations was integrated into a tool, designed for OPC/XML drawing file transformations to CySeMoL models. The accuracy of transformations in this tool has been analyzed and presented in this paper to acquire data on the proposed solutions influence to the accuracy in content based model transformation.


Author(s):  
Dragan Gaševic ◽  
Marek Hatala

Service-oriented architectures (SOA) are an essential platform to provide infrastructures that support widespread collaboration between organizations. These service-oriented systems are a new context for software developers, who must now be equipped with new development methods and technologies. This new context has specific requirements, such as better collaboration and communication between business users and software engineering across organizations and increased agility of the development and maintenance processes to better respond to newly emerged or changed requirements. In this paper, the authors present a research agenda that looks at the use of a novel software engineering discipline—model-driven engineering. By switching the focus from low-level technical details to high-level problem-specific details, model-driven engineering addresses challenges in the development of service-oriented systems. This paper particularly discusses the approach to the development of service-oriented systems based on business process modeling, which integrate business vocabularies and rules in different stages of the development lifecycle. Here, model-driven engineering can provide many promising solutions.


Author(s):  
Luis Costa ◽  
Neil Loughran ◽  
Roy Grønmo

Model-driven software engineering (MDE) has the basic assumption that the development of software systems from high-level abstractions along with the generation of low-level implementation code can improve the quality of the systems and at the same time reduce costs and improve time to market. This chapter provides an overview of MDE, state of the art approaches, standards, resources, and tools that support different aspects of model-driven software engineering: language development, modeling services, and real-time applications. The chapter concludes with a reflection over the main challenges faced by projects using the current MDE technologies, pointing out some promising directions for future developments.


2011 ◽  
Vol 8 (2) ◽  
pp. 225-253 ◽  
Author(s):  
Barrett Bryant ◽  
Jeff Gray ◽  
Marjan Mernik ◽  
Peter Clarke ◽  
Robert France ◽  
...  

Developing software from models is a growing practice and there exist many model-based tools (e.g., editors, interpreters, debuggers, and simulators) for supporting model-driven engineering. Even though these tools facilitate the automation of software engineering tasks and activities, such tools are typically engineered manually. However, many of these tools have a common semantic foundation centered around an underlying modeling language, which would make it possible to automate their development if the modeling language specification were formalized. Even though there has been much work in formalizing programming languages, with many successful tools constructed using such formalisms, there has been little work in formalizing modeling languages for the purpose of automation. This paper discusses possible semantics-based approaches for the formalization of modeling languages and describes how this formalism may be used to automate the construction of modeling tools.


2012 ◽  
Vol 06 (02) ◽  
pp. 205-242 ◽  
Author(s):  
ARTEM KATASONOV

This paper introduces a novel framework for Ontology-Driven Software Engineering. This framework is grounded on the prior related work that studied the interplay between the model-driven engineering and the ontological modeling. Our framework makes a contribution by incorporating a more flexible means for ontological modeling that also has a higher performance in processing, and by incorporating a wider range of ontology types into ODSE. As a result, it extends the power and speed of the classification and the model consistency checking ontological services enabled by the prior work, and brings new ontological services: semantic search in model repositories, three kinds of semi-automated model composition services: task-based, result-based, and opportunistic, and the policy enforcement service. The primary intended use for this framework is to be implemented as part of model-driven engineering tools to support software engineers. We describe our reference implementation of such a tool called Smart Modeller, and report on a performance evaluation of our framework carried out with the help of it.


Author(s):  
Dragan Gaševic ◽  
Marek Hatala

Service-oriented architectures (SOA) are an essential platform to provide infrastructures that support widespread collaboration between organizations. These service-oriented systems are a new context for software developers, who must now be equipped with new development methods and technologies. This new context has specific requirements, such as better collaboration and communication between business users and software engineering across organizations and increased agility of the development and maintenance processes to better respond to newly emerged or changed requirements. In this paper, the authors present a research agenda that looks at the use of a novel software engineering discipline—model-driven engineering. By switching the focus from low-level technical details to high-level problem-specific details, model-driven engineering addresses challenges in the development of service-oriented systems. This paper particularly discusses the approach to the development of service-oriented systems based on business process modeling, which integrate business vocabularies and rules in different stages of the development lifecycle. Here, model-driven engineering can provide many promising solutions.


Sign in / Sign up

Export Citation Format

Share Document