scholarly journals Spatially Heterogeneous Estimates of Fire Frequency in Ponderosa Pine Forests of Washington, USA

Fire Ecology ◽  
2010 ◽  
Vol 6 (3) ◽  
pp. 117-135 ◽  
Author(s):  
James T. Kernan ◽  
Amy E. Hessl
2013 ◽  
Vol 22 (8) ◽  
pp. 1021 ◽  
Author(s):  
Calvin A. Farris ◽  
Christopher H. Baisan ◽  
Donald A. Falk ◽  
Megan L. Van Horne ◽  
Peter Z. Fulé ◽  
...  

Fire history researchers employ various forms of search-based sampling to target specimens that contain visible evidence of well preserved fire scars. Targeted sampling is considered to be the most efficient way to increase the completeness and length of the fire-scar record, but the accuracy of this method for estimating landscape-scale fire frequency parameters compared with probabilistic (i.e. systematic and random) sampling is poorly understood. In this study we compared metrics of temporal and spatial fire occurrence reconstructed independently from targeted and probabilistic fire-scar sampling to identify potential differences in parameter estimation in south-western ponderosa pine forests. Data were analysed for three case studies spanning a broad geographic range of ponderosa pine ecosystems across the US Southwest at multiple spatial scales: Centennial Forest in northern Arizona (100ha); Monument Canyon Research Natural Area (RNA) in central New Mexico (256ha); and Mica Mountain in southern Arizona (2780ha). We found that the percentage of available samples that recorded individual fire years (i.e. fire-scar synchrony) was correlated strongly between targeted and probabilistic datasets at all three study areas (r=0.85, 0.96 and 0.91 respectively). These strong positive correlations resulted predictably in similar estimates of commonly used statistical measures of fire frequency and cumulative area burned, including Mean Fire Return Interval (MFI) and Natural Fire Rotation (NFR). Consistent with theoretical expectations, targeted fire-scar sampling resulted in greater overall sampling efficiency and lower rates of sample attrition. Our findings demonstrate that targeted sampling in these systems can produce accurate estimates of landscape-scale fire frequency parameters relative to intensive probabilistic sampling.


Nature ◽  
2004 ◽  
Vol 432 (7013) ◽  
pp. 87-90 ◽  
Author(s):  
Jennifer L. Pierce ◽  
Grant A. Meyer ◽  
A. J. Timothy Jull

2004 ◽  
Vol 116 (3) ◽  
pp. 246-251 ◽  
Author(s):  
HEATHER M. SWANSON ◽  
BREANNA KINNEY ◽  
ALEXANDER CRUZ

2019 ◽  
Vol 450 ◽  
pp. 117502 ◽  
Author(s):  
Jose M. Iniguez ◽  
James F. Fowler ◽  
W. Keith Moser ◽  
Carolyn H. Sieg ◽  
L. Scott Baggett ◽  
...  

2010 ◽  
Vol 25 (3) ◽  
pp. 112-119 ◽  
Author(s):  
Daniel Tinker ◽  
Gail K. Stakes ◽  
Richard M. Arcano

Abstract Temperate forest ecosystems continue to play an important role in the global carbon cycle, and the ability to accurately quantify carbon storage and allocation remains a critical tool for managers and researchers. This study was aimed at developing new allometric equations for predicting above- and belowground biomass of both mature trees and saplings of ponderosa pine trees in the Black Hills region of the western United States and at evaluating thinning effects on biomass pools and aboveground productivity. Study sites included three stands that had been commercially thinned and one unmanaged stand. Nine allometric equations were developed for mature trees, and six equations were developed for saplings; all models exhibited strong predictive power. The unmanaged stand contained more than twice as much total aboveground biomass as any of the thinned stands. Aboveground biomass allocation among tree compartments was similar among the three older stands but quite different from the young, even-aged stand. Stand-level aboveground net primary production was higher in the unmanaged and intensively managed stands, yet tree-level annual productivity was much lower in the unmanaged stands than in any of the managed forests, suggesting that thinning of some forest stands may increase their ability to sequester and store carbon. Our data also suggest that different management approaches did not have the same effect on carbon allocation as they did on total carbon storage capacity, but rather, stand age was the most important factor in predicting carbon allocation within individual trees and stands. Identification of the relationships between stand structure and forest management practices may help identify various management strategies that maximize rates of carbon storage in ponderosa pine forests.


Sign in / Sign up

Export Citation Format

Share Document