fire frequency
Recently Published Documents


TOTAL DOCUMENTS

598
(FIVE YEARS 150)

H-INDEX

65
(FIVE YEARS 6)

2022 ◽  
Vol 9 ◽  
Author(s):  
Thomas J. Rodengen ◽  
Marlow G. Pellatt ◽  
Karen E. Kohfeld

Paleoecological investigation of two montane lakes in the Kootenay region of southeast British Columbia, Canada, reveal changes in vegetation in response to climate and fire throughout the Holocene. Pollen, charcoal, and lake sediment carbon accumulation rate analyses show seven distinct zones at Marion Lake, presently in the subalpine Engelmann Spruce-Subalpine Fir (ESSF) biogeoclimatic (BEC) zone of Kootenay Valley, British Columbia. Comparison of these records to nearby Dog Lake of Kootenay National Park of Canada in the Montane Spruce (MS) BEC zone of Kootenay Valley, British Columbia reveals unique responses of ecosystems in topographically complex regions. The two most dramatic shifts in vegetation at Marion Lake occur firstly in the early Holocene/late Pleistocene in ML Zone 3 (11,010–10,180 cal. yr. B.P.) possibly reflecting Younger Dryas Chronozone cooling followed by early Holocene xerothermic warming noted by the increased presence of the dry adapted conifer, Douglas-fir (Pseudotsuga menziesii) and increasing fire frequency. The second most prominent change occurred at the transition from ML Zone 5 through 6a (∼2,500 cal. yr. B.P.). This zone transitions from a warmer to a cooler/wetter climate as indicated by the increase in western hemlock (Tsuga heterophylla) and subsequent drop in fire frequency. The overall cooling trend and reduction in fire frequency appears to have occurred ∼700 years later than at Dog Lake (∼43 km to the south and 80 m lower in elevation), resulting in a closed montane spruce forest, whereas Marion Lake developed into a subalpine ecosystem. The temporal and ecological differences between the two study sites likely reflects the particular climate threshold needed to move these ecosystems from developed forests to subalpine conditions, as well as local site climate and fire conditions. These paleoecological records indicate future warming may result in the MS transitioning into an Interior Douglas Fir (IDF) dominated landscape, while the ESSF may become more forested, similar to the modern MS, or develop into a grassland-like landscape dependent on fire frequency. These results indicate that climate and disturbance over a regional area can dictate very different localized vegetative states. Local management implications of these dynamic landscapes will need to understand how ecosystems respond to climate and disturbance at the local or ecosystem/habitat scale.


Energies ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 189
Author(s):  
Hee Jin Kim ◽  
Kyeong Min Jang ◽  
In Seok Yeo ◽  
Hwa Young Oh ◽  
Sun Il Kang ◽  
...  

Wind direction and speed are the most important factors that determine the degree of damage caused by a jet fire. In this study, the metal hose used to extract/supply fuel was identified as the component with the highest risk for a jet fire occurring at an aerospace facility. A risk assessment was performed to evaluate the individual risk of a jet fire from the metal hose according to the wind direction and speed. HSE failure data was applied for calculating the jet fire probability including metal hose failure, ignition frequency, and jet fire frequency. Which was 3.0 × 10−4. The individual risk of different fatality probabilities was calculated according to the wind rose data for the aerospace facility. The individual risk from jet fire in the aerospace facility was calculated with a maximum risk of 3.35 × 10−5 and a minimum risk of 1.49 × 10−6. The individual risk satisfied HSE ALARP criteria. In addition, firewalls, extinguishing systems, and an emergency shut off system were enhanced, and it was thought that the risk from jet fire could satisfy acceptable criteria.


2021 ◽  
Vol 12 (2) ◽  
pp. 11
Author(s):  
Luís A. Pungulanhe ◽  
Natasha S. Ribeiro ◽  
Tomázia M. C. Veterano

Fires occur in a widespread manner in various types of vegetation cover at national level, and are often associated with human hunting, grazing and above all the practice of itinerant agriculture. With the purpose to propose the map of frequency of fire, remote sensing data was collected from 2014 to 2018, using the Moderate Resolution Image Spectroradiometer (MODIS) of the burned area (MCD64A1), which allowed the construction of the map of frequency and intensity of fires, associated with data collected in 59 plots on field. It was observed that the Gilé National Park (PNAG) records an average fire frequency of 0.38 times/year and the return interval of 5.38 years, and an average fire return interval of 2.62 years. During the study period, the PNAG burned 92.8% of the area, which means that on average for each year it burned about 18.56% of its area, there are no significant differences in relation to the area burned per year (p> 0.942037) but there are significant differences in relation to the area burned per month (p <1.24e-07).


2021 ◽  
Vol 25 (12) ◽  
pp. 60-64
Author(s):  
T.E. Katkova

Improving forest ecosystems protection management based on a long-term fire hazard forecasting has been studied. Fires long-term dynamics in terms of quantity in various forests has been investigated. Fire risk patterns in forest ecosystems have been established conditional to regional characteristics due to solar period. Fire dynamics and solar periods analytics over multi-year period of time have brought to light that conditions contributing to a high fire frequency in Leningrad and Tver regional forest ecosystems arise in years with maximum and minimum solar activity. A long-term forecast of high forest fire danger periods for the next solar cycle has been performed through parameters of solar activity – Wolf numbers.


2021 ◽  
Vol 51 (4) ◽  
pp. 352-362
Author(s):  
Rosane B.L. CAVALCANTE ◽  
Bruno M. SOUZA ◽  
Silvio J. RAMOS ◽  
Markus GASTAUER ◽  
Wilson R. NASCIMENTO Junior ◽  
...  

ABSTRACT The fire frequency in the Amazon increased rapidly after the 1990s due to deforestation and forest degradation, and it is expected to increase in response to climate change. We analyzed the fire occurrence and assessed seven fire hazard indices in the municipality of Canaã dos Carajás, in the eastern Amazon, for different land use and land cover (LULC) types. We used data from three weather stations located at different heights to compare the performance of the indices using skill scores and success percentages for each LULC. Overall most hotspots occurred in deforested areas and native forests, which were the main LULC types, while few were observed in rupestrian fields, urban areas, and mining areas. However, forests presented the lowest number of hotspots per unit area, especially inside protected areas, and all hotspots in forest areas were observed after a severe drought in 2015. The performance of the fire indices varied as a function of the LULC class and the weather station considered, which indicates the importance of choosing the most appropriate location of the station according to the purpose of the monitoring. The Keetch-Byram Drought Index showed the best performance for predicting fire occurrence for all LULC classes, and forests and deforested areas individually. Despite its simplicity, the Angstrom index stood out due to its good performance in the prediction of days with more than six hotspots.


2021 ◽  
Vol 4 ◽  
Author(s):  
Maximilian Hartung ◽  
Geovana Carreño-Rocabado ◽  
Marielos Peña-Claros ◽  
Masha T. van der Sande

Wildfires are becoming increasingly frequent and devastating in many tropical forests. Although seasonally dry tropical forests (SDTF) are among the most fire-threatened ecosystems, their long-term response to frequent wildfires remains largely unknown. This study is among the first to investigate the resilience in response to fire of the Chiquitano SDTF in Bolivia, a large ecoregion that has seen an unprecedented increase in fire intensity and frequency in recent years. We used remote sensing data to assess at a large regional and temporal scale (two decades) how fire frequency and environmental factors determine the resilience of the vegetation to fire disturbance. Resilience was measured as the resistance to fire damage and post-fire recovery. Both parameters were monitored for forested areas that burned once (F1), twice (F2), and three times (F3) between 2000 and 2010 and compared to unburned forests. Resistance and recovery were analyzed using time series of the Normalized Burn Ratio (NBR) index derived from Landsat satellite imagery, and climatic, topographic, and a human development-related variable used to evaluate their influence on resilience. The overall resilience was lowest in forests that burned twice and was higher in forests that burned three times, indicating a possible transition state in fire resilience, probably because forests become increasingly adapted during recurrent fires. Climatic variables, particularly rainfall, were most influential in determining resilience. Our results indicate that the Chiquitano dry forest is relatively resilient to recurring fires, has the capacity to recover and adapt, and that climatic differences are the main determinants of the spatial variation observed in resilience. Nevertheless, further research is needed to understand the effect of the higher frequency and intensity of fires expected in the future due to climate change and land use change, which may pose a greater threat to forest resilience.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
José Infante ◽  
Fernando J. Novoa ◽  
José Tomás Ibarra ◽  
Don J. Melnick ◽  
Kevin L. Griffin ◽  
...  

AbstractWildfire regimes are being altered in ecosystems worldwide. The density of reptiles responds to fires and changes to habitat structure. Some of the most vulnerable ecosystems to human-increased fire frequency are old-growth Araucaria araucana forests of the southern Andes. We investigated the effects of wildfires on the density and richness of a lizard community in these ecosystems, considering fire frequency and elapsed time since last fire. During the 2018/2019 southern summer season, we conducted 71 distance sampling transects to detect lizards in Araucaria forests of Chile in four fire “treatments”: (1) unburned control, (2) long-term recovery, (3) short-term recovery, and (4) burned twice. We detected 713 lizards from 7 species. We found that the density and richness of lizards are impacted by wildfire frequency and time of recovery, mediated by the modification of habitat structure. The lizard community varied from a dominant arboreal species (L. pictus) in unburned and long-recovered stands, to a combination of ground-dwelling species (L. lemniscatus and L. araucaniensis) in areas affected by two fires. Araucaria forests provided key habitat features to forest reptiles after fires, but the persistence of these old-growth forests and associated biodiversity may be threatened given the increase in fire frequency.


Forests ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1567
Author(s):  
Damla Cinoğlu ◽  
Howard E. Epstein ◽  
Alan J. Tepley ◽  
Kristina J. Anderson-Teixeira ◽  
Jonathan R. Thompson ◽  
...  

Climate change is leading to increased drought intensity and fire frequency, creating early-successional landscapes with novel disturbance–recovery dynamics. In the Klamath Mountains of northwestern California and southwestern Oregon, early-successional interactions between nitrogen (N)-fixing shrubs (Ceanothus spp.) and long-lived conifers (Douglas-fir) are especially important determinants of forest development. We sampled post-fire vegetation and soil biogeochemistry in 57 plots along gradients of time since fire (7–28 years) and climatic water deficit (aridity). We found that Ceanothus biomass increased, and Douglas-fir biomass decreased with increasing aridity. High aridity and Ceanothus biomass interacted with lower soil C:N more than either factor alone. Ceanothus biomass was initially high after fire and declined with time, suggesting a large initial pulse of N-fixation that could enhance N availability for establishing Douglas-fir. We conclude that future increases in aridity and wildfire frequency will likely limit post-fire Douglas-fir establishment, though Ceanothus may ameliorate some of these impacts through benefits to microclimate and soils. Results from this study contribute to our understanding of the effects of climate change and wildfires on interspecific interactions and forest dynamics. Management seeking to accelerate forest recovery after high-severity fire should emphasize early-successional conifer establishment while maintaining N-fixing shrubs to enhance soil fertility.


Fire Ecology ◽  
2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Susan C. Loeb ◽  
Rachel V. Blakey

Abstract Background Bats are important components of forested ecosystems and are found in forests worldwide. Consequently, they often interact with fire. Previous reviews of the effects of fire on bats have focused on prescribed fire effects, in part due to the limited number of studies on bat responses to wildfire. However, over the past several years, studies on bat responses to wildfire and prescribed fire have increased considerably. We reviewed this rapidly expanding body of literature to determine whether bats respond differently to prescribed fire and wildfire, and the important factors driving those differences. We also examined regional similarities and differences in bat response to prescribed fire and wildfire and identified areas in need of further research. Results Our review included 52 studies (29 prescribed fire, 23 wildfire) from North and South America, Europe, Australia, and Africa, although studies from Europe, South America, and Africa were limited. In general, we found that bats show positive or neutral responses to prescribed fire, whereas a greater proportion of negative responses were reported for wildfire. However, some of the negative responses to wildfire are short-lived or local, suggesting that bats may be resilient to the effects of fire. Factors such as fire severity, fire frequency, time since last burn, burn extent, season of burn, and pyrodiversity were all found to be important drivers of bats’ responses to both prescribed fire and wildfire. Conclusions The importance of the spatial and temporal aspects of fire suggests that these factors need to be considered when designing future studies and interpreting results. Pyrodiversity may be a particularly important concept to further our understanding of bats’ responses to fire. We found several gaps in our knowledge including lack of information on direct effects of fire (e.g., mortality), regional and taxonomic biases, effects of wildfire on roosting habitat, and the effects of climate change. Although current studies suggest that fire may be an important management tool for improving bat habitat, the threat of more frequent, extensive, and severe wildfires may put additional stress on some bat populations, particularly those being impacted by disease, habitat loss and fragmentation, and climate change.


2021 ◽  
Author(s):  
Jed Meunier

Abstract BackgroundThe Lake States experienced unprecedented land use changes during Euro-American settlement (settlement) including large, destructive fires. Forest changes were radical in this region and largely attributed to anomalous settlement era fires in slash (cumulation of tops and branches) following cutover logging. In this study I place settlement era fires in a historical context by examining fire scar data in comparison to historical accounts and investigate fire-vegetation-climate relationships within a 400-year context.ResultsSettlement era fires (1851–1947) were less frequent than historical fires (1548–1850) with little evidence that slash impacted fire frequency or occurrence at site or ecoregion scales. Only one out of 25 sites had more frequent settlement era fires and that site was a pine forest that had never been harvested. Settlement era fires were similar across disparate ecoregions and forest types including in areas with very different land use history. Settlement fires tended to burn during significantly dry periods, the same conditions driving large fires for the past 400 years. The burned area in the October 8, 1871 Peshtigo Fire was comprised of mesic forests where fuels were always abundant and high-severity fires would be expected given the conditions in 1871. Furthermore, slash would not have been a major contributor to fire behavior or effects in the Peshtigo Fire.ConclusionsHistorical records, like written accounts of fires and settlement era survey records, provide a reference point for landscape changes but lack temporal depth to understand forest dynamics or provide a mechanistic understanding of changes. While settlement land use changes of Lake States forests were pervasive, fires were not the ultimate degrading factor, but rather likely one of the few natural processes still at work.


Sign in / Sign up

Export Citation Format

Share Document