scholarly journals Cosmic ray and solar energetic particle flux in paleomagnetospheres

2010 ◽  
Vol 62 (3) ◽  
pp. 333-345 ◽  
Author(s):  
Anja Stadelmann ◽  
Joachim Vogt ◽  
Karl-Heinz Glassmeier ◽  
May-Britt Kallenrode ◽  
Gerd-Hannes Voigt
2020 ◽  
Vol 902 (1) ◽  
pp. 13
Author(s):  
C. Krishnaprasad ◽  
Smitha V. Thampi ◽  
Anil Bhardwaj ◽  
Christina O. Lee ◽  
K. Kishore Kumar ◽  
...  

2021 ◽  
Vol 73 (1) ◽  
Author(s):  
Mitsuo Oka ◽  
Takahiro Obara ◽  
Nariaki V. Nitta ◽  
Seiji Yashiro ◽  
Daikou Shiota ◽  
...  

AbstractIn gradual Solar Energetic Particle (SEP) events, shock waves driven by coronal mass ejections (CMEs) play a major role in accelerating particles, and the energetic particle flux enhances substantially when the shock front passes by the observer. Such enhancements are historically referred to as Energetic Storm Particle (ESP) events, but it remains unclear why ESP time profiles vary significantly from event to event. In some cases, energetic protons are not even clearly associated with shocks. Here, we report an unusual, short-duration proton event detected on 5 June 2011 in the compressed sheath region bounded by an interplanetary shock and the leading edge of the interplanetary CME (or ICME) that was driving the shock. While < 10 MeV protons were detected already at the shock front, the higher-energy (> 30 MeV) protons were detected about four hours after the shock arrival, apparently correlated with a turbulent magnetic cavity embedded in the ICME sheath region.


2021 ◽  
Author(s):  
Mitsuo Oka ◽  
Takahiro Obara ◽  
Nariaki Nitta ◽  
Seiji Yashiro ◽  
Daikou Shiota ◽  
...  

&lt;p&gt;In gradual Solar Energetic Particle (SEP) events, shock waves driven by coronal mass ejections (CMEs) play a major role in accelerating particles, and the energetic particle flux enhances substantially when the shock front passes by the observer. Such enhancements are historically referred to as Energetic Storm Particle (ESP) events, but it remains unclear why ESP time profiles vary significantly from event to event. In some cases, energetic protons are not even clearly associated with shocks. Here we report an unusual, short-duration proton event detected on 5 June 2011 in the compressed sheath region bounded by an interplanetary shock and the leading-edge of the interplanetary CME (or ICME) that was driving the shock. While &lt;10 MeV protons were detected already at the shock front, the higher-energy (&gt;30 MeV) protons were detected about four hours after the shock arrival, apparently correlated with a turbulent magnetic cavity embedded in the ICME sheath region.&lt;/p&gt;


2013 ◽  
Vol 556 ◽  
pp. A146 ◽  
Author(s):  
J. J. Blanco ◽  
M. A. Hidalgo ◽  
R. Gómez-Herrero ◽  
J. Rodríguez-Pacheco ◽  
B. Heber ◽  
...  

2012 ◽  
Vol 12 (2) ◽  
pp. 769-778 ◽  
Author(s):  
I. A. Mironova ◽  
I. G. Usoskin ◽  
G. A. Kovaltsov ◽  
S. V. Petelina

Abstract. Energetic cosmic rays are the main source of ionization of the low-middle atmosphere, leading to associated changes in atmospheric properties. Via the hypothetical influence of ionization on aerosol growth and facilitated formation of clouds, this may be an important indirect link relating solar variability to climate. This effect is highly debated, however, since the proposed theoretical mechanisms still remain illusive and qualitative, and observational evidence is inconclusive and controversial. Therefore, important questions regarding the existence and magnitude of the effect, and particularly the fraction of aerosol particles that can form and grow, are still open. Here we present empirical evidence of the possible effect caused by cosmic rays upon polar stratospheric aerosols, based on a case study of an extreme solar energetic particle (SEP) event of 20 January 2005. Using aerosol data obtained over polar regions from different satellites with optical instruments that were operating during January 2005, such as the Stratospheric Aerosol and Gas Experiment III (SAGE III), and Optical Spectrograph and Infrared Imaging System (OSIRIS), we found a significant simultaneous change in aerosol properties in both the Southern and Northern Polar regions in temporal association with the SEP event. We speculate that ionization of the atmosphere, which was abnormally high in the lower stratosphere during the extreme SEP event, might have led to formation of new particles and/or growth of preexisting ultrafine particles in the polar stratospheric region. However, a detailed interpretation of the effect is left for subsequent studies. This is the first time high vertical resolution measurements have been used to discuss possible production of stratospheric aerosols under the influence of cosmic ray induced ionization. The observed effect is marginally detectable for the analyzed severe SEP event and can be undetectable for the majority of weak-moderate events. The present interpretation serves as a conservative upper limit of solar energetic particle effect upon polar stratospheric aerosols.


Sign in / Sign up

Export Citation Format

Share Document