shock front
Recently Published Documents


TOTAL DOCUMENTS

515
(FIVE YEARS 64)

H-INDEX

34
(FIVE YEARS 3)

2021 ◽  
Vol 128 (1) ◽  
Author(s):  
Timothy I. Calver ◽  
Michael B. Shattan ◽  
Glen P. Perram

2021 ◽  
Vol 923 (2) ◽  
pp. 160
Author(s):  
Anne M. Medling ◽  
Lisa J. Kewley ◽  
Daniela Calzetti ◽  
George C. Privon ◽  
Kirsten Larson ◽  
...  

Abstract We study the ionization and excitation structure of the interstellar medium in the late-stage gas-rich galaxy merger NGC 6240 using a suite of emission-line maps at ∼25 pc resolution from the Hubble Space Telescope, Keck/NIRC2 with Adaptive Optics, and the Atacama Large Millimeter/submillimeter Array (ALMA). NGC 6240 hosts a superwind driven by intense star formation and/or one or both of two active nuclei; the outflows produce bubbles and filaments seen in shock tracers from warm molecular gas (H2 2.12 μm) to optical ionized gas ([O iii], [N ii], [S ii], and [O i]) and hot plasma (Fe XXV). In the most distinct bubble, we see a clear shock front traced by high [O iii]/Hβ and [O iii]/[O i]. Cool molecular gas (CO(2−1)) is only present near the base of the bubble, toward the nuclei launching the outflow. We interpret the lack of molecular gas outside the bubble to mean that the shock front is not responsible for dissociating molecular gas, and conclude that the molecular clouds are partly shielded and either entrained briefly in the outflow, or left undisturbed while the hot wind flows around them. Elsewhere in the galaxy, shock-excited H2 extends at least ∼4 kpc from the nuclei, tracing molecular gas even warmer than that between the nuclei, where the two galaxies’ interstellar media are colliding. A ridgeline of high [O iii]/Hβ emission along the eastern arm aligns with the southern nucleus’ stellar disk minor axis; optical integral field spectroscopy from WiFeS suggests this highly ionized gas is centered at systemic velocity and likely photoionized by direct line of sight to the southern active galactic nucleus.


Author(s):  
Dr. Sarvesh Chandra Yadav

<p>The effects of overtaking disturbances behind the flow on the propagation of diverging cylindrical shock Waves through an ideal gas in presence of a magnetic field having =constant=  and an Initial density distribution  where  is a constant,  is the density at the plane / exes of symmetry: The analytical formula for flow variables representing both the position form viz; weak and strong cases at shock waves have been obtained. Their numerical estimates at permissible shock front locations have been obtained.</p> <p>There numerical estimates at permissible shock front location's have been Calculated and compared with earlier result describing in Free Propagation through figures. After inclusion of E.O.D. noted that there is no change at flow variable with parameters and . However, the trends of variation with propagation distance r, for shock strength, shock velocity and particle velocity are not change in case of weak shock with work Magnetic field<strong>(wswmf).</strong></p>


2021 ◽  
Vol 2127 (1) ◽  
pp. 012001
Author(s):  
I Mursenkova ◽  
M Timokhin ◽  
M Tikhonov ◽  
A Militsina ◽  
A Kuznetsov

Abstract The aim of the study is to determine the shock wave position in experimental shadowgraph images and to evaluate the accuracy by digital image processing. The experimental images were obtained with the shock tube with a rectangular channel. The shadowgraph optical system formed a parallel light beam. It passed through the plane-parallel quartz glasses of the shock tube test section. The process synchronization system at the facility allows registering the shadowgraph images of unsteady flows with shock waves with a high-speed camera or with a single frame camera. The obtained spatial intensity profiles were used to determine the coordinates of gas-dynamic discontinuities at different stages of the flow evolution. shadowgraph patterns were analysed taking into account diffraction at the shock front in case of a laser light source.


Sensors ◽  
2021 ◽  
Vol 21 (21) ◽  
pp. 7212
Author(s):  
Oleg V. Ivanov ◽  
Paulo Caldas ◽  
Gaspar Rego

In this paper, we investigate modification of transmission spectra of long-period fiber grating structures with an acoustic shock front propagating along the fiber. We simulate transmission through inhomogeneous long-period fiber gratings, π-shift and reflective π-shift gratings deformed by an acoustic shock front. Coupled mode equations describing interaction of co-propagating modes in a long-period fiber grating structures with inhomogeneous deformation are used for the simulation. Two types of apodization are considered for the grating modulation amplitude, such as uniform and raised-cosine. We demonstrate how the transmission spectrum is produced by interference between the core and cladding modes coupled at several parts of the gratings having different periods. For the π-shift long-period fiber grating having split spectral notch, the gap between the two dips becomes several times wider in the grating with the acoustic wave front than the gap in the unstrained grating. The behavior of reflective long-period fiber gratings depends on the magnitude of the phase shift near the reflective surface: an additional dip is formed in the 0-shift grating and the short-wavelength dip disappears in the π-shift grating.


Author(s):  
Lin Zhou ◽  
Honghui Teng ◽  
Hoi Dick Ng ◽  
Pengfei Yang ◽  
Zonglin Jiang

2021 ◽  
Vol 129 (1) ◽  
Author(s):  
Malcolm Cartwright ◽  
Sam A. E. G. Falle

AbstractPrevious studies (Watt et al. in J Eng Math 75(1):1, 2012; Cartwright and Falle in J Eng Math 115(1):157, 2019) have shown that a streamline based approach to modelling of steady state detonations can produce good results for rate laws which have maximal reaction at the shock. In this paper we consider a Variational Streamline Approximation (VSA) which introduces streamline curvature. Comparing results with Direct Numerical Simulations (DNS) and the existing Straight Streamline Approximation (SSA) model, we find that the VSA improves the predictive accurary of streamlines modelling compared to DNS calculations, capturing the shock front and sonic surfaces with greater accuracy than SSA.


2021 ◽  
Vol 39 (4) ◽  
pp. 571-598
Author(s):  
Christian Mazelle ◽  
Bertrand Lembège

Abstract. The nonstationarity of the terrestrial bow shock is analyzed in detail from in situ magnetic field measurements issued from the fluxgate magnetometer (FGM) experiment of the Cluster mission. Attention is focused on statistical analysis of quasi-perpendicular supercritical shock crossings. The present analysis stresses for the first time the importance of a careful and accurate methodology in the data processing, which can be a source of confusion and misunderstanding if not treated properly. The analysis performed using 96 shock front crossings shows evidence of a strong variability of the microstructures of the shock front (foot and ramp), which are analyzed in great detail. The main results are that (i) most statistics clearly show that the ramp thickness is very narrow and can be as low as a few c/ωpe (electron inertia length); (ii) the width is narrower when the angle θBn (between the shock normal and the upstream magnetic field) approaches 90∘; (iii) the foot thickness strongly varies, but its variation has an upper limit provided by theoretical estimates given in previous studies (e.g., Schwartz et al., 1983; Gosling and Thomsen, 1985; Gosling and Robson, 1985); and (iv) the presence of foot and overshoot, as shown in all front profiles, confirms the importance of dissipative effects. Present results indicate that these features can be signatures of the shock front self-reformation among a few mechanisms of nonstationarity identified from numerical simulation and theoretical studies. A comparison with 2D particle-in-cell (PIC) simulation for a perpendicular supercritical shock (used as reference) has been performed and shows the following: (a) the ramp thickness varies only slightly in time over a large fraction of the reformation cycle and reaches a lower-bound value on the order of a few electron inertial length; (b) in contrast, the foot width strongly varies during a self-reformation cycle but always stays lower than an upper-bound value in agreement with the value given by Woods (1971); and (c) as a consequence, the time variability of the whole shock front is depending on both ramp and foot variations. Moreover, a detailed comparative analysis shows that many elements of analysis were missing in previous reported studies concerning both (i) the important criteria used in the data selection and (ii) the different and careful steps of the methodology used in the data processing itself. The absence of these precise elements of analysis makes the comparison with the present work difficult; worse, it makes some final results and conclusive statements quite questionable at the present time. At least, looking for a precise estimate of the shock transition thickness presents nowadays a restricted interest, since recent results show that the terrestrial shock is rather nonstationary, and one unique typical spatial scaling of the microstructures of the front (ramp, foot) must be replaced by some “variation ranges” (with lower-bound and upper-bound values) within which the spatial scales of the fine structures can extend.


Sign in / Sign up

Export Citation Format

Share Document