scholarly journals Thermodynamic Effects of Nanotechnological Augmentation of Hydrogen Fuel Cells

2017 ◽  
Vol 4 ◽  
pp. 76-86 ◽  
Author(s):  
Reece Cohen Woodley ◽  
Kane Yang ◽  
Geoffrey Bruce Tanner ◽  
Dennis Tran

This meta-study focuses on the research regarding the use of nanotechnology in traditional fuel cells in order to increase thermodynamic efficiency through the exploitation of various thermodynamic systems and theories. The use of nanofilters and nano-structured catalysts improve the fuel cell system through the means of filtering molecules from protons and electrons significantly increases the possible output of the fuel cell and the use of nano-platinum catalysts to lower the activation energy of the fuel cell chemical reaction a notable amount resulting in a more efficient system and smaller entropy in comparison to the use of macro sized catalysts.

2006 ◽  
Vol 3 (4) ◽  
pp. 492-494 ◽  
Author(s):  
Sari Tasa ◽  
Teppo Aapro

Mobile device manufacturers would like to provide totally wireless solutions—including charging. Future multimedia devices need to have longer operation times as simultaneously they require more power. Device miniaturization leaves less volumetric space available also for the energy source. The energy density of the Li-ion batteries is high, and continuously developed, but not at the same speed as the demand from devices. Fuel cells can be one possible solution to power mobile devices without connection to the mains grid, but they will not fit to all use cases. The fuel cell system includes a core unit, fuel system, controls, and battery to level out peaks. The total energy efficiency is the sum of the performance of the whole system. The environmental performance of the fuel cell system cannot be determined yet. Regulatory and standardization work is on-going and driving the fuel cell technology development. The main target is in safety, which is very important aspect for energy technologies. The outcomes will also have an effect on efficiency, cost, design, and environmental performance. Proper water, thermal, airflow, and fuel management of the fuel cell system combined with mechanical durability and reliability are the crucial enablers for stable operation required from the integrated power source of a mobile device. Reliability must be on the same level as the reliability of the device the energy source is powering; this means years of continuous operation time. Typically, the end-users are not interested of the enabling technologies nor understand the usage limits. They are looking for easy to use devices to enhance their daily life. Fuel cell technology looks promising but there are many practical issues to be solved.


Electronics ◽  
2018 ◽  
Vol 7 (11) ◽  
pp. 331 ◽  
Author(s):  
Tae-Ho Eom ◽  
Jin-Wook Kang ◽  
Jintae Kim ◽  
Min-Ho Shin ◽  
Jung-Hyo Lee ◽  
...  

In this paper, a voltage drop compensation method for hybrid hydrogen fuel cell battery system, with a hydrogen recirculation powering a forklift, is studied. During recirculating hydrogen fuel to recycle hydrogen that has not reacted enough at the system, impurities can be mixed with the hydrogen fuel. This leads to low hydrogen concentration and a drop in the output voltage of the fuel cell system. In excessive voltage drop, the fuel cell system can be shutdown. This paper proposes a voltage drop compensation method using an electrical control algorithm to prevent system shutdown by reducing voltage drop. Technically, voltage drop is typically caused by three kinds of factors: (1) The amount of pure hydrogen supply; (2) the temperature of fuel cell stacks; and (3) the current density to catalysts of the fuel cell. The proposed compensation method detects voltage drop caused by those factors, and generates compensation signals for a controller of a DC–DC converter connecting to the output of the fuel cell stack; thus, the voltage drop is reduced by decreasing output current. At the time, insufficient output current to a load is supplied from the batteries. In this paper, voltage drop caused by the abovementioned three factors is analyzed, and the operating principle of the proposed compensation method is specified. To verify this operation and the feasibility of the proposed method, experiments are conducted by applying it to a 10 kW hybrid fuel cell battery system for a forklift.


Author(s):  
M. O. Branda˜o ◽  
S. C. A. Almeida

This paper describes the study made by COPPE/UFRJ which goal is the development of fuel cells systems for automotive applications. The study is divided in two parts. The first is the development of a PEM direct fuel cell. In addition a method for experimentally determine the possibility of using a fuel in a fuel cell is developed. The components of catalysts are also tested such as Tin and Ruthenium in a Platinum coated electrode. The second part is the control system for a fuel cell powered vehicle. The vehicle power is modeled from its actions and losses. A power of 80kW seems to be a great choice if made of 50kW from the fuel cell system and 30kW from an accumulator such as a pack of batteries or a super capacitor.


2013 ◽  
Author(s):  
Alan Warburton ◽  
Dave Mossop ◽  
Ben Burslem ◽  
Pratap Rama ◽  
Paul Adcock ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document