PAM Review Energy Science & Technology
Latest Publications


TOTAL DOCUMENTS

67
(FIVE YEARS 14)

H-INDEX

3
(FIVE YEARS 1)

Published By "University Of Technology, Sydney"

2205-5231

2020 ◽  
Vol 7 ◽  
Author(s):  
System Administrator ◽  
Ben Andrew ◽  
Jesse McNamara ◽  
Michael Karanikolas

The substantial increase in the transistor density of integrated circuits (ICs) in recent times has allowed considerable improvements in computing power. With increasing transistor and power density, the heat produced by modern ICs has increased significantly. This in turn has negative effects on the performance, reliability, and power consumption of the ICs. A solution to the IC’s complications caused by overheating is integrated cooling, in which cooling fluid is delivered through microchannel heat sinks on the backside of an IC. This meta-study will investigate two microfluidic cooling technologies. First, implementing varied size microfluidic channels close to the silicone substrate of the IC. Additionally, a micro-pin fin heat sink is integrated into the ICs’ fluidic microchannels. Different sized pin fins were used, to achieve a wider understanding of the application of pin fins in microfluidic cooling and compare the thermal performances of each cooling method. Integrated cooling subverts the need for suboptimal thermal interfaces and bulky heat-sinks, as well as reducing the intensity of localised hotspots commonly present in high-power electronics. Further, by locating the main heat exchange medium closer to the die of an IC, we reduce the number of thermal interfaces. This meta-study suggests that cylindrical micro-pin fin arrays with pitch longitude and latitude of 60μm and 120μm, are more thermally efficient than plain microfluidic cooling channels.  


2020 ◽  
Vol 7 ◽  
Author(s):  
System Administrator ◽  
Guina Mourad ◽  
Harry Lennox ◽  
Madeline Turner ◽  
Madison Traynor

Solar energy is a renewable energy source however sunlight is only available during limited hours in the day. Researchers are looking towards an efficient energy storage system to ensure constant energy output. Concrete can be used as a filler material in a solar thermal energy storage system. This meta-study compared the heat capacity and thermal conductivity of concrete to other solid materials and concrete aggregates, allowing for the viability of concrete storage systems to be examined. The heat capacity of concrete was 5-10% higher than the comparative solid materials like brick and sand. Additionally, concrete without cement replacement materials were found to be more thermally conductive than concrete with added fly ash, blast furnace slag or silica fume with conductivity decreasing between 81-87%. However, concrete with the supplementary cementitious materials possess a higher heat capacity than concrete without cement replacement with capacity increasing by 25% at 30% replacement by fly ash with a grain size 300-600µm. When compared to the energy efficiency of other thermal energy systems, a concrete thermocline is shown to be less efficient than a molten salt two-tank energy storage system by less than 5%. Therefore, while concrete is a viable solid filler material in thermal energy storage systems, a molten salt two-tank thermal energy storage system is marginally more efficient. However, a partial cement replacement by supplementary cementitious materials can extend the effectiveness of the concrete thermal storage.


2020 ◽  
Vol 7 ◽  
Author(s):  
System Administrator ◽  
Lauren Sharpe ◽  
Navil Burhanuddin ◽  
Tiana Majcan ◽  
Jonathan Rebolledo

Water is, arguably, Earth's most valuable and vital resource. Devices that extract water from the atmosphere have been intensely researched as a means of harvesting potable water in environments where it is otherwise scarce. One such device is a Thermoelectric Cooler (TEC); a device that utilises the Peltier effect to cool a system. TECs are a promising solution for atmospheric water generation (AWG) over their competitors due to their simplicity and refrigeration capabilities. Despite these advantages, TECs are still considered mostly inefficient as they demand relatively high costs and energy consumption. This meta-analysis focuses on optimising the efficiency of small-scale Peltier devices. It explores the means of optimising the liquid cooled heat sink by using a specific flow field microchannel configuration such that less pumping power is required to push the coolant and more energy can be saved. A combination of optimal operating current of the Peltier device and of a novel flow liquid-cooled microchannel heatsink configuration with bifurcated fins using Galinstan as a coolant promises a significant increase in water production per unit of energy consumption for the AWG system.


2020 ◽  
Vol 7 ◽  
Author(s):  
System Administrator ◽  
Filip Bojko ◽  
Giorge Gemisis ◽  
James Mitchell ◽  
Christopher Parker

Polymer Electrolyte Fuel Cells (PEFCs) are an increasingly significant facet of modern renewable energy and transportation, providing an electrochemical method of energy generation with high power density, thermal properties, and efficiency. PEFCs tend to increase in efficiency as temperature increases but detrimental effects begin to occur, including membrane degradation and dehydration. These effects are unfavourable in the design of optimised fuel cells as they can result in reduced efficiency and lifetime. Current PEFCs are in a state where they are commercially viable but have a very limited temperature operation region (<80°C). This meta-study analysis presents research around expanding the operational temperatures of PEFCs through a parametric analysis of active cell area, phosphonic acid content, and organic/inorganic fillers. This analysis finds an increase in proton conductivity for PEFCs at higher temperature by using phosphonic acid functionalised membranes with maximised degree of phosphonation (up to 1.5 DP). It was also found that using ionic liquid functionalised carbon materials as fillers was an effective strategy to enhance the proton conductivity of PEFCs in a higher temperature environment while also providing increased thermal stability of the membrane. Additionally, higher thermal efficiency and power density may be achieved by increasing temperature and humidity to maximise proton conductivity towards theoretical maxima dictated by the active cell area, which was found to peak at 36 cm2.


2020 ◽  
Vol 7 ◽  
Author(s):  
System Administrator ◽  
Jurgen Schulte

PAM Review is the peer-reviewed student research journal produced in the School of Mathematical and Physical Sciences at the University of Technology Sydney. The journal was created to provide a student-centered authentic learning experience in a theory heavy course to help facilitating Faculty of Science graduate attributes and the University’s model of teaching. The student journal was first introduced in 2014 in the second-year physics course Energy Science and Technology. The course covers fundamentals of thermodynamics and statistical mechanics and their applications in current and emerging technologies.


2019 ◽  
Vol 6 ◽  
pp. 2-15 ◽  
Author(s):  
Alexander P Condos ◽  
Leo Zimaras ◽  
Jacob Marlow ◽  
Mutiara Kurniawan

This meta-study explores some factors that can potentially affect the efficiency of a wearable thermoelectric generator. These include, but are not limited to; doping percentage, manufacturing technology, thermocouple length, area, use of heat spreaders, material, airflow and specific position on the human body. These specific designs and materials have been reviewed in this paper and specific variables have been proposed to ensure greater efficiency. In this meta- study, Bi0.5Sb1.5Te3 and Ag2Se are found to be the most effective materials, with PVD as the most effective manufacturing method. A broad temperature differential generates greater power output. Practically, a condition where there is a difference in temperature of more than 40K between the body and its environment in the application of wearable thermoelectric devices is unlikely. Despite this, a temperature difference below 40K, although small, is extremely feasible and would be able to enough power to keep intended wearable thermoelectric devices running at a constant. Keywords: Thermoelectric; Seebeck Effect; Peltier; TEG; ZT; Wearable


2019 ◽  
Vol 6 ◽  
pp. 28-37
Author(s):  
Josef Richmond ◽  
Lesley Spencer ◽  
Tommy Tran ◽  
Evan Williams

Firefighters are exposed to high risk scenarios in which the prevention of extreme heat injuries is largely dependent on the effectiveness of their protective clothing. The following meta-study examines contemporary literature to determine the usefulness of phase change materials (PCM’s) in improving the effectiveness of the current firefighter protective clothing (FFPC) model in order to better protect firefighters. The time- temperature for multiple PCM’s in environments with low, medium and high heat fluxes (taken as 2.5-5 kW/m2 for 700 seconds, 10-15 kW/m2 for 300 seconds and 20-40 kW/m2for 30 seconds respectively) were compared in terms of the rate of temperature increase and final temperature. The study found that PCM I produced the best temperature reduction in a low flux, PCM K did so in a medium flux, and PCM B did so in a high flux. The study also found that overall the PCMs were most effective in a low flux, therefore further study should be directed towards creating PCMs that are more effective in high-flux environments. Keywords: Phase Change Material; Fire Fighter Protective Clothing; Heat Flux


2019 ◽  
Vol 6 ◽  
pp. 110-123
Author(s):  
Federico Moreno ◽  
Swapnil Poudyal ◽  
Otto Cranwell ◽  
Ben Andrew

The need for efficient, smart radiators and thermal control technologies will be imperative to ensure the longevity of satellites and for carrying out temperature sensitive operations in space. Advancement in nanofabrication techniques has brought about the ability to create metamaterial nanostructures and selectively control their optical properties so that they reflect better in the visible spectrum and strongly emit in the infrared spectrum, which allows for better cooling. This meta-analysis looks at contemporary research that has utilised metamaterial nanostructures for passive radiative cooling attempting to identify the cooling trends among these structures. The absorbance, emissivity and reflection spectra of these structures are compared, and their effectiveness compared to conventional coolant coatings is critiqued upon. The defining thermodynamic parameters for this study were radiative cooling power and temperature reduction. Through inductive reasoning, we predict that the emissivity in the infrared of a pyramidal layered structure of Al2O3, TiO2 and SiO2 can outperform current material choices. Improving efficiency with the prediction outlined can provide increased radiative cooling. Keywords: Passive radiative cooling; thermal radiation; metamaterials; broadband optical filters; selective absorption and emission; two-dimensional thin film coatings; nanophotonic structures


2019 ◽  
Vol 6 ◽  
pp. 38-55
Author(s):  
Jake Barnes ◽  
Ryan Coutts ◽  
Toby Horne ◽  
Jesse Thai

Molten Salt Reactors (MSRs) are one of the six Gen (IV) reactor designs chosen by the Generation IV International Forum for further development. A key area of concern for MSRs is the selection of molten salt composition. Parameters such as heat capacity, thermal conductivity, and viscosity are essential to consider when selecting a salt mixture for use as a coolant in an MSR. In this meta-study, the thermodynamic properties of a range of halide, carbonate and nitrate salts are compared. Using this data, an estimate is made for the usable energy density of each salt. This value in combination with the raw data is used to assess the viability of each salt for use in an MSR. It was found that fluoride salts are the most suitable. They tend to have high heat capacities and large thermal conductivities in relation to the other salts in this study. The 50-50 concentration of LiF-BeF2 had by far the highest usable energy density at 2.21 J/cm3K, however its extremely high viscosity, of 22.2 mPa.s, makes it unsuitable for use as a circulating coolant. LiF-NaF-BeF2 had the next highest usable energy density at 1.82 Jcm-3K-1. Without considering factors beyond thermodynamic properties, it was concluded that LiF-NaF-BeF2, would be the most suitable of the studied salts for use as an MSR coolant. Much of the experimental data in this field was obtained over 40 years ago, it is often of poor quality, lacking standardisation and with large error margins. An attempt has been made in this paper to compile this data and to standardise it to such a degree that salts can be reasonable compared. Keywords: Molten Salt Reactor; FLiBe; FLiNaK; Heat Capacity; Carnot Efficiency


2019 ◽  
Vol 6 ◽  
pp. 16-27
Author(s):  
Scott Clarkson ◽  
Asah H Khan ◽  
Dipendra Singh

Computer Integrated Circuit (IC) microprocessors are becoming more powerful and densely packed while cooling mechanisms are seeing an equivalent improvement to compensate. A significant limit to cooling performance is thermal transfer between die and heatsink. In this meta study we evaluate carbon nanotube (CNT) thermal interface materials (TIMs) in order to determine how to maximise thermal transfer efficiency. We gathered information from over 15 articles focused on the thermodynamic parameters of CNT TIMs from databases such as Scopus, IEEE Xplore and ScienceDirect. Articles were filtered by key words including ‘carbon nanotubes’ and ‘thermal interface materials’ to identify scientific articles relevant to our research on TIMs. From our meta study we have found that enhancing CNTs will provide the best improvement in TIMs. The parameters analysed to determine TIM performance included thermal resistance, thermal conductivity and the effect of CNT concentration on computer operation time. Through our investigation we understood that increasing the concentration of CNT from 0 to 2 wt % increases the operation time from 75 seconds at 66°C to 200s at 63°C as well as increasing the thermal conductivity by 1.82 times for the AS5 thermal paste with 2 wt % CNT. Furthermore, CNT TIM pastes with less thickness have a lower thermal resistance of 0.4 K/W. However not all these parameters have been tested with computer chips. This means that in order to increase current heat transfer efficiency limit, we must integrate these parameters into experimental models. Keywords: Thermal Interface Material; Thermal Paste; Carbon Nanotubes; Thermal Transfer Efficiency; Integrated Circuit; Heat Sink; Heat Dissipation.


Sign in / Sign up

Export Citation Format

Share Document