scholarly journals Vibrational spectroscopic and Hirshfeld surface analysis of N,N'-(azanediylbis(2,1-phenylene))bis(2-chloropropanamide)

2019 ◽  
Vol 10 (4) ◽  
pp. 386-402
Author(s):  
Aysegul Suzan Polat ◽  
Ilkay Gumus ◽  
Hakan Arslan

The title molecule, N,N'-(azanediylbis(2,1-phenylene))bis(2-chloropropanamide) (LNNN) was synthesized and characterized by means of Hirshfeld surface analysis and vibrational (FT-IR and RAMAN) studies. Ab-initio Hartree-Fock (HF) and density functional theory (DFT; BLYP, B3LYP, B3PW91 and mPW1PW91) calculations were accomplished using 6-31G(d,p) and 6-311G(d,p) basis sets. The comparison of calculated bond lengths and angles with X-ray crystal structure shows sufficient agreement. The solid phase FT-IR and FT-RAMAN spectra of LNNN have been recorded in the regions 4000-525 cm-1 and 4000-50 cm-1, respectively. A comparative analysis between the calculated and experimental vibrational frequencies was carried out and significant bands were assigned. The results indicated a good correlation between experimental and theoretical IR and RAMAN frequencies. A detailed analysis of the intermolecular interactions via Hirshfeld surface analysis and fingerprint plots revealed that supramolecular structure of the LNNN is stabilized mainly by the formation of H···H, C···H, Cl···H ve O···H  intermolecular interactions.

2019 ◽  
Vol 10 (4) ◽  
pp. 323-335
Author(s):  
Immihan Sezen Aydogdu ◽  
Ilkay Gumus ◽  
Hakan Arslan

The vibrational frequencies, atomic charges and the related properties of the 2,2,2-trichloro-N,N-bis(2-(2,2,2-trichloroacetamido)phenyl)acetamide (H2LNNN) were investi-gated by Ab-initio Hartree-Fock (HF) and Density Functional Theory (DFT) methods such as BLYP, B3LYP, B3PW91 and mPW1PW91 functionals with 6-31G(d,p) and 6-311G(d,p) basis sets. The experimentally determined parameters were compared with those calculated theoretically and they were found to complement each other with a very good correlation. The theoretical vibrational spectrum of H2LNNN molecule was interpreted by means of potential energy distributions using the SQM 2.0 program. The Hirshfeld surface analysis was carried out to discuss the role of the hydrogen bonds and other intermolecular contacts in crystal lattice. Hirshfeld surface analysis revealed the occurrence of Cl⋯H, Cl⋯Cl, Cl⋯C, H···H, O⋯H, C···H and Cl···π interactions that display an important role on the crystal packing stabilization of the compound.


Author(s):  
Fatiha Mahdi ◽  
Assia Sid ◽  
Rafika Bouchene ◽  
Paul Mosset ◽  
Thierry Roisnel

The title compound, (E,E)-3-methyl-2,5-bis(4-methylbenzylidene)cyclopentanone (MBMCP), C22H22O, was obtained by Claisen–Schmidt condensation of 4-methylbenzaldehyde with 3-methylcyclopentanone in good yield. The structure of MBMCP was studied using UV, FT–IR and Raman spectroscopy, single-crystal X-ray diffraction (XRD) measurements, and 1H and 13C nuclear magnetic resonance (NMR) spectroscopy. The molecular structure of MBMCP is fully extended in the E,E configuration. C—H...π stacking interactions play a significant role in the stabilization of the molecular packing. Hirshfeld surface analysis was used to quantify the non-covalent interactions in the crystal lattice. Microbiological studies were performed to investigate the antimicrobial activity of this new product.


2006 ◽  
Vol 4 (4) ◽  
Author(s):  
Khaled Bahgat

AbstractThe solid phase FT-IR and FR-Raman spectra of acetyl coumarin have been recorded in the regions 4000–50 cm−1. The spectra were interpreted with the aid of normal coordinate analysis following full structure optimization and force field calculations based on density functional theory (DFT) and Hartree-Fock (HF) at 6–31G* and 6–311++G** basis sets. The resulting force fields were transformed to internal coordinates, the calculated vibrational frequencies and normal modes were utilized in the assignment of the observed vibrational fundamentals. The measured spectral data were used to refine the vibrational force constants by means of a small number of scaling factors.


CrystEngComm ◽  
2021 ◽  
Author(s):  
Nicoleta Caimac ◽  
Elena Melnic ◽  
Diana Chisca ◽  
Marina S. Fonari

The title compound crystallises in the triclinic centrosymmetric space group P1̄ with an intriguing high number of crystallographically unique binary salt-like adducts (Z′ = 8) and a total number of ionic species (Z′′ = 16) in the asymmetric unit.


Author(s):  
Ballo Daouda ◽  
Nanou Tiéba Tuo ◽  
Tuncer Hökelek ◽  
Kangah Niameke Jean-Baptiste ◽  
Kodjo Charles Guillaume ◽  
...  

The title compound, C18H16N2O2, consists of perimidine and methoxyphenol units, where the tricyclic perimidine unit contains a naphthalene ring system and a non-planar C4N2 ring adopting an envelope conformation with the NCN group hinged by 47.44 (7)° with respect to the best plane of the other five atoms. In the crystal, O—HPhnl...NPrmdn and N—HPrmdn...OPhnl (Phnl = phenol and Prmdn = perimidine) hydrogen bonds link the molecules into infinite chains along the b-axis direction. Weak C—H...π interactions may further stabilize the crystal structure. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H...H (49.0%), H...C/C...H (35.8%) and H...O/O...H (12.0%) interactions. Hydrogen bonding and van der Waals interactions are the dominant interactions in the crystal packing. Computational chemistry indicates that in the crystal, the O—HPhnl...NPrmdn and N—HPrmdn...OPhnl hydrogen-bond energies are 58.4 and 38.0 kJ mol−1, respectively. Density functional theory (DFT) optimized structures at the B3LYP/ 6–311 G(d,p) level are compared with the experimentally determined molecular structure in the solid state. The HOMO–LUMO behaviour was elucidated to determine the energy gap.


Author(s):  
Tao Feng ◽  
Li-Li Li ◽  
Ya-Juan Li ◽  
Wen-Kui Dong

Three novel multinuclear NiII complexes, namely, bis{μ-2-methoxy-6-[8-(pyridin-2-yl)-3,6-dioxa-2,7-diazaocta-1,7-dien-1-yl]phenolato}bis[thiocyanatonickel(II)], [Ni2(L)2(NCS)2], 1, bis{μ-2-methoxy-6-[8-(pyridin-2-yl)-3,6-dioxa-2,7-diazaocta-1,7-dien-1-yl]phenolato}bis[azidonickel(II)], [Ni2(L)2(N3)2], 2, and catena-poly[[{2-methoxy-6-[8-(pyridin-2-yl)-3,6-dioxa-2,7-diazaocta-1,7-dien-1-yl]phenolato}nickel(II)]-μ-dicyanamidato], [Ni(L)(dca)] n , 3 {dca is dicyanamide, C2N3, and HL is 2-methoxy-6-[8-(pyridin-2-yl)-3,6-dioxa-2,7-diazaocta-1,7-dien-1-yl]phenol, C16H17N3O4}, with a half-salamo-based pyridine-containing HL ligand have been synthesized and characterized by FT–IR, UV–Vis absorption spectroscopy, X-ray crystallography, Hirshfeld surface analysis and density functional theory (DFT) calculations. The central NiII ions in complexes 1–3 are hosted in the half-salamo-based N3O-donor cavity of the organic ligand. Complex 1 is a centrosymmetric dimer and two [Ni(L)(NCS)] units form a centrosymmetric dimeric structure, which is bridged by two phenolate O atoms. The two N atoms at the axial ends are provided by two NCS− ligands. In complex 1, each NiII ion has a six-coordinated octahedral geometry. Complex 2 is similar to 1, but they differ in that the auxiliary NCS− ligand is replaced by N3 −. However, complex 3 is a one-dimensional coordination polymer constructed from [Ni(L)(dca)] units, which are connected by the auxiliary bidentate dca ligand via N-donor atoms. As with complexes 1 and 2, the NiII ion in 3 has a six-coordinated octahedral geometry.


Sign in / Sign up

Export Citation Format

Share Document