scholarly journals Synthesis, crystal structure, DFT studies, and Hirshfeld surface analysis of N,N'-bis(3-quinolyl-methylene)diphenylethanedione dihydrazone

2021 ◽  
Vol 12 (4) ◽  
pp. 394-400
Author(s):  
Goutam Kumar Patra ◽  
Amit Kumar Manna ◽  
Dinesh De

The synthesis, characterization, and theoretical studies of a novel hydrazine, N,N’-bis-(3-quinolylmethylene)diphenylethanedione dihydrazone (1) has been reported. The molecular structure has been characterized by room-temperature single-crystal X-ray diffraction which reveals that two quinoline moieties are disposed nearly perpendicularly around the central C-C bond giving a ‘L’ shape of the molecule. This particular geometry gives rise to the hydrogen-bonded supramolecular rectangle of two self-complementary molecules. These supramolecular units are further assembled by π-π interaction. The Hirshfeld surface analysis of compound 1 shows that C···C, C···H, H···H, and N···H interactions of 13.1, 9.9, 52.3, and 7.4%, respectively, which exposed that the main intermolecular interactions were H···H intermolecular interactions. Crystal data for C34H24N6: Triclinic, space group P-1 (no. 2), a = 10.885(3) Å, b = 11.134(3) Å, c = 12.870(3) Å, α = 90.122(6)°, β = 114.141(6)°, γ = 110.277(5)°, V = 1316.1(6) Å3, Z = 2, T = 100(2) K, μ(MoKα) = 0.080 mm-1, Dcalc = 1.304 g/cm3, 7309 reflections measured (3.518° ≤ 2Θ ≤ 39.276°), 2318 unique (Rint = 0.0527, Rsigma = 0.0565) which were used in all calculations. The final R1 was 0.0416 (I > 2σ(I)) and wR2 was 0.1074 (all data).

Author(s):  
Masoud Mirzaei ◽  
Maryam Bazargan ◽  
Pouria Ebtehaj ◽  
Joel T. Mague

The product obtained from the reaction of pyridine-2,3-dicarboxylic acid and hydrated copper(II) chloride in hot aqueous NaOH solution was determined by low temperature X-ray diffraction to be [Cu3(C6H4NO3)4(OH)2(H2O)2] n or [Cu3(μ-OH)2(μ-nicNO)4(H2O)2] n (nicNO is pyridine-3-carboxylate N-oxide), a structure obtained from room temperature data and reported previously. The present determination is improved in quality and treatment of the H atoms. A Hirshfeld surface analysis of the intermolecular interactions is presented.


CrystEngComm ◽  
2014 ◽  
Vol 16 (33) ◽  
pp. 7638-7648 ◽  
Author(s):  
Magdalena Owczarek ◽  
Irena Majerz ◽  
Ryszard Jakubas

Experimental (single-crystal X-ray diffraction) and theoretical (AIM, DFT, NBO, Hirshfeld surface) studies have been performed to elucidate intermolecular interactions of anhydrous C8H16N4O2 and its monohydrated analog.


Author(s):  
Svitlana V. Shishkina ◽  
Anna M. Shaposhnik ◽  
Vyacheslav M. Baumer ◽  
Vitalii V. Rudiuk ◽  
Igor A. Levandovskiy

Two salts of 4-[(benzylamino)carbonyl]-1-methylpyridinium (Am) with chloride (C14H15N2O+·Cl−) and bromide (C14H15N2O+·Br−) anions were studied and compared with the iodide salt. AmCl crystallizes in the centrosymmetric space group P21/n while AmBr and AmI form crystals in the Sohncke space group P212121. Crystals of AmBr are isostructural to those of AmI. The cation and anion are bound by an N–H...Hal hydrogen bond. Hirshfeld surface analysis was used to compare different types of intermolecular interactions in the three structures under study.


CrystEngComm ◽  
2021 ◽  
Author(s):  
Marissa K. Melvin ◽  
Brian W. Skelton ◽  
Paul K. Eggers ◽  
Colin L. Raston

Single X-ray diffraction studies and Hirshfeld surface analysis of three transition metal coordination complexes of Py5Me2COOH reveals the ligand's diverse coordination utility and the structure directing effect of the carboxylate moiety.


2020 ◽  
Vol 44 (45) ◽  
pp. 19541-19554
Author(s):  
Aamer Saeed ◽  
Asma Khurshid ◽  
Ulrich Flörke ◽  
Gustavo A. Echeverría ◽  
Oscar E. Piro ◽  
...  

Based on experimental and computational data, a complex network of intermolecular interactions has been rationalized for antipyrine compounds.


2016 ◽  
Vol 20 (07) ◽  
pp. 833-842
Author(s):  
Rahul Soman ◽  
Subramaniam Sujatha ◽  
Chellaiah Arunkumar

Synthesis and crystal structure analysis of meso-tetratolylporphyrins, 1–5 combined with computational Hirshfeld surface analysis were investigated. The crystal packing of porphyrins 1, 3 and 4 are arranged in an “orthogonal fashion” whereas 2 and 5 are in a “slip-stack or off-set fashion” through various intermolecular interactions. Compound 2 exhibits saddle geometry whereas 5 showed a domed geometry as evident from the single crystal X-ray diffraction studies. The enhancement of non-planarity in 2 is probably due to the presence of numerous intermolecular interactions caused by the presence of trifluoroacetate anions on both faces of the porphyrin in addition to the bulky bromine groups at the [Formula: see text]-pyrrole positions. In 5, the non-planarity is merely due to the metal coordination at the porphyrin core as pentacoordinated Mn[Formula: see text] center with a chloro ligand in the axial position. Hirshfeld surface analysis was performed in order to analyze the various intermolecular interactions present in these porphyrins and the result was discussed.


Sign in / Sign up

Export Citation Format

Share Document