scholarly journals Global risk from the atmospheric dispersion of radionuclides by nuclear power plant accidents in the coming decades

2014 ◽  
Vol 14 (9) ◽  
pp. 4607-4616 ◽  
Author(s):  
T. Christoudias ◽  
Y. Proestos ◽  
J. Lelieveld

Abstract. We estimate the global risk from the release and atmospheric dispersion of radionuclides from nuclear power plant accidents using the EMAC atmospheric chemistry–general circulation model. We included all nuclear reactors that are currently operational, under construction and planned or proposed. We implemented constant continuous emissions from each location in the model and simulated atmospheric transport and removal via dry and wet deposition processes over 20 years (2010–2030), driven by boundary conditions based on the IPCC A2 future emissions scenario. We present global overall and seasonal risk maps for potential surface layer concentrations and ground deposition of radionuclides, and estimate potential doses to humans from inhalation and ground-deposition exposures to radionuclides. We find that the risk of harmful doses due to inhalation is typically highest in the Northern Hemisphere during boreal winter, due to relatively shallow boundary layer development and limited mixing. Based on the continued operation of the current nuclear power plants, we calculate that the risk of radioactive contamination to the citizens of the USA will remain to be highest worldwide, followed by India and France. By including stations under construction and those that are planned and proposed, our results suggest that the risk will become highest in China, followed by India and the USA.

2013 ◽  
Vol 13 (11) ◽  
pp. 30287-30309 ◽  
Author(s):  
T. Christoudias ◽  
Y. Proestos ◽  
J. Lelieveld

Abstract. We estimate the global risk from the release and atmospheric dispersion of radionuclides from nuclear power plant accidents using the EMAC atmospheric chemistry–general circulation model. We included all nuclear reactors that are currently operational, under construction and planned or proposed. We implemented constant continuous emissions from each location in the model and simulated atmospheric transport and removal via dry and wet deposition processes over 20 yr (2010–2030), driven by boundary conditions based on the IPCC A2 future emissions scenario. We present global overall and seasonal risk maps for potential surface layer concentrations and ground deposition of radionuclides, and estimate potential dosages to humans from the inhalation and the exposure to ground deposited radionuclides. We find that the risk of harmful doses due to inhalation is typically highest during boreal winter due to relatively shallow boundary layer development and reduced mixing. Based on the continued operation of the current nuclear power plants, we calculate that the risk of radioactive contamination to the citizens of the USA will remain to be highest worldwide, followed by India and France. By including stations under construction and those that are planned and proposed our results suggest that the risk will become highest in China, followed by India and the USA.


2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Kwame Gyamfi ◽  
Sylvester Attakorah Birikorang ◽  
Emmanuel Ampomah-Amoako ◽  
John Justice Fletcher

Abstract Atmospheric dispersion modeling and radiation dose calculation have been performed for a generic 1000 MW water-water energy reactor (VVER-1000) assuming a hypothetical loss of coolant accident (LOCA). Atmospheric dispersion code, International Radiological Assessment System (InterRAS), was employed to estimate the radiological consequences of a severe accident at a proposed nuclear power plant (NPP) site. The total effective dose equivalent (TEDE) and the ground deposition were calculated for various atmospheric stability classes, A to F, with the site-specific averaged meteorological conditions. From the analysis, 3.7×10−1 Sv was estimated as the maximum TEDE corresponding to a downwind distance of 0.1 km within the dominating atmospheric stability class (class A) of the proposed site. The intervention distance for evacuation (50 mSv) and sheltering (10 mSv) were estimated for different stability classes at different distances. The intervention area for evacuation ended at 0.5 km and that for sheltering at 1.5 km. The results from the study show that designated area for public occupancy will not be affected since the estimated doses were below the annual regulatory limits of 1 mSv.


Author(s):  
Kenji Akagi ◽  
Masayuki Ishiwata ◽  
Kenji Araki ◽  
Jun-Ichi Kawahata

In nuclear power plant construction, countless variety of parts, products, and jigs more than one million are treated under construction. Furthermore, strict traceability to the history of material, manufacturing, and installation is required for all products from the start to finish of the construction, which enforce much workforce and many costs at every project. In an addition, the operational efficiency improvement is absolutely essential for the effective construction to reduce the initial investment for construction. As one solution, RFID (Radio Frequent Identification) application technology, one of the fundamental technologies to realize a ubiquitous society, currently expands its functionality and general versatility at an accelerating pace in mass-production industry. Hitachi believes RFID technology can be useful of one of the key solutions for the issues in non-mass production industry as well. Under this situation, Hitachi initiated the development of next generation plant concept (ubiquitous plant construction technology) which utilizes information and RFID technologies. In this paper, our application plans of RFID technology to nuclear power is described.


Author(s):  
Jere J. LaPlatney

Planned outage performance is a key measure of how well an Nuclear Power Plant (NPP) is operated. Performance during planned outages strongly affects virtually all of a plant’s performance metrics. In recognition of this fact, NPP operators worldwide have and continue to focus on improving their outage performance. The process of improving outage performance is commonly referred to as ‘Outage Optimization’ in the industry. This paper starts with a summary of the principles of Outage Optimization. It then provides an overview of a process in common use in the USA and elsewhere to manage the improvement of planned outages. The program described is comprehensive in that it involves managing improvement in both the Preparation and Execution phases of outage management.


2012 ◽  
Vol 518-523 ◽  
pp. 1242-1246 ◽  
Author(s):  
Rui Ping Guo ◽  
Chun Lin Yang

The growing concern over the effect of atmosphere dispersion resulted from radioactive material was noticeable. This paper demonstrated the variance of atmosphere dispersion factor for accident release from nuclear power plant through running PAVAN (Atmospheric Dispersion of Radioactive Releases from Nuclear Power Plants) model. Also, we investigated the effect of release height (short for H) on atmosphere dispersion factor and compared the correlation between atmosphere dispersion factor and dispersion distance. Our results showed that atmosphere dispersion factor would descend with increased release height. As dispersion distance increasing, the tendency of atmosphere dispersion factor expressed complicated status caused by the difference of wind direction. It was illustrated that the phenomena was caused by the integrated action between the wind direction and release height. The probability distribution of atmosphere dispersion factor also validated that the distribution was depend on the wind direction. Probability analysis indicated that the atmosphere dispersion factor under H=100m was overall less than that under H=75m.


Elements ◽  
2012 ◽  
Vol 8 (3) ◽  
pp. 195-200 ◽  
Author(s):  
A. Mathieu ◽  
I. Korsakissok ◽  
D. Quelo ◽  
J. Groell ◽  
M. Tombette ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document