Review of Top-down and Bottom-up aerosol-cloud-closure: towards understanding sources of uncertainty in deriving cloud radiative flux

2017 ◽  
Author(s):  
Anonymous
2017 ◽  
Author(s):  
Kevin J. Sanchez ◽  
Greg C. Roberts ◽  
Radiance Calmer ◽  
Keri Nicoll ◽  
Eyal Hashimshoni ◽  
...  

Abstract. Top-down and bottom-up aerosol-cloud-radiative flux closures were conducted at the Mace Head atmospheric research station in Galway, Ireland in August 2015. This study is part of the BACCHUS (Impact of Biogenic versus Anthropogenic emissions on Clouds and Climate: towards a Holistic UnderStanding) European collaborative project, with the goal of understanding key processes affecting aerosol-cloud-radiative flux closures to improve future climate predictions and develop sustainable policies for Europe. Instrument platforms include ground-based, unmanned aerial vehicles (UAV), and satellite measurements of aerosols, clouds and meteorological variables. The ground-based and airborne measurements of aerosol size distributions and cloud condensation nuclei (CCN) concentration were used to initiate a 1D microphysical aerosol-cloud parcel model (ACPM). UAVs were equipped for a specific science mission, with an optical particle counter for aerosol distribution profiles, a cloud sensor to measure cloud extinction, or a 5-hole probe for 3D wind vectors. UAV cloud measurements are rare and have only become possible in recent years through the miniaturization of instrumentation. These are the first UAV measurements at Mace Head. ACPM simulations are compared to in-situ cloud extinction measurements from UAVs to quantify closure in terms of cloud radiative flux. Two out of seven cases exhibit sub-adiabatic vertical temperature profiles within the cloud, which suggests that entrainment processes affect cloud microphysical properties and lead to an overestimate of simulated cloud radiative flux. Including an entrainment parameterization and explicitly calculating the entrainment fraction in the ACPM simulations both improved cloud-top radiative closure. Entrainment reduced the difference between simulated and observation-derived cloud-top radiative flux (δRF) by between 30 W m−2 and 40 W m−2. After accounting for entrainment, satellite-derived cloud droplet number concentrations (CDNC) were within 30 % of simulated CDNC. In cases with a well-mixed boundary layer, δRF is less than 25 W m−2 after accounting for cloud-top entrainment, compared to less than 50 W m−2 when entrainment is not taken into account. In cases with a decoupled boundary layer, cloud microphysical properties are inconsistent with ground-based aerosol measurements, as expected, and δRF is as high as 88 W m−2, even after accounting for cloud-top entrainment. This work demonstrates the need to take in-situ measurements of aerosol properties for cases where the boundary layer is decoupled as well as consider cloud-top entrainment to accurately model stratocumulus cloud radiative flux.


2017 ◽  
Vol 17 (16) ◽  
pp. 9797-9814 ◽  
Author(s):  
Kevin J. Sanchez ◽  
Gregory C. Roberts ◽  
Radiance Calmer ◽  
Keri Nicoll ◽  
Eyal Hashimshoni ◽  
...  

Abstract. Top-down and bottom-up aerosol–cloud shortwave radiative flux closures were conducted at the Mace Head Atmospheric Research Station in Galway, Ireland, in August 2015. This study is part of the BACCHUS (Impact of Biogenic versus Anthropogenic emissions on Clouds and Climate: towards a Holistic UnderStanding) European collaborative project, with the goal of understanding key processes affecting aerosol–cloud shortwave radiative flux closures to improve future climate predictions and develop sustainable policies for Europe. Instrument platforms include ground-based unmanned aerial vehicles (UAVs)1 and satellite measurements of aerosols, clouds and meteorological variables. The ground-based and airborne measurements of aerosol size distributions and cloud condensation nuclei (CCN) concentration were used to initiate a 1-D microphysical aerosol–cloud parcel model (ACPM). UAVs were equipped for a specific science mission, with an optical particle counter for aerosol distribution profiles, a cloud sensor to measure cloud extinction or a five-hole probe for 3-D wind vectors. UAV cloud measurements are rare and have only become possible in recent years through the miniaturization of instrumentation. These are the first UAV measurements at Mace Head. ACPM simulations are compared to in situ cloud extinction measurements from UAVs to quantify closure in terms of cloud shortwave radiative flux. Two out of seven cases exhibit sub-adiabatic vertical temperature profiles within the cloud, which suggests that entrainment processes affect cloud microphysical properties and lead to an overestimate of simulated cloud shortwave radiative flux. Including an entrainment parameterization and explicitly calculating the entrainment fraction in the ACPM simulations both improved cloud-top radiative closure. Entrainment reduced the difference between simulated and observation-derived cloud-top shortwave radiative flux (δRF) by between 25 and 60 W m−2. After accounting for entrainment, satellite-derived cloud droplet number concentrations (CDNCs) were within 30 % of simulated CDNC. In cases with a well-mixed boundary layer, δRF is no greater than 20 W m−2 after accounting for cloud-top entrainment and up to 50 W m−2 when entrainment is not taken into account. In cases with a decoupled boundary layer, cloud microphysical properties are inconsistent with ground-based aerosol measurements, as expected, and δRF is as high as 88 W m−2, even high (> 30 W m−2) after accounting for cloud-top entrainment. This work demonstrates the need to take in situ measurements of aerosol properties for cases where the boundary layer is decoupled as well as consider cloud-top entrainment to accurately model stratocumulus cloud radiative flux. 1The regulatory term for UAV is remotely piloted aircraft (RPA).


Author(s):  
Jun Hyung Lee ◽  
Jee-Hye Choi ◽  
Jae Saeng Youn ◽  
Young Joo Cha ◽  
Woonheung Song ◽  
...  

AbstractMeasurement uncertainty is a metrological concept to quantify the variability of measurement results. There are two approaches to estimate measurement uncertainty. In this study, we sought to provide practical and detailed examples of the two approaches and compare the bottom-up and top-down approaches to estimating measurement uncertainty.We estimated measurement uncertainty of the concentration of glucose according to CLSI EP29-A guideline. Two different approaches were used. First, we performed a bottom-up approach. We identified the sources of uncertainty and made an uncertainty budget and assessed the measurement functions. We determined the uncertainties of each element and combined them. Second, we performed a top-down approach using internal quality control (IQC) data for 6 months. Then, we estimated and corrected systematic bias using certified reference material of glucose (NIST SRM 965b).The expanded uncertainties at the low glucose concentration (5.57 mmol/L) by the bottom-up approach and top-down approaches were ±0.18 mmol/L and ±0.17 mmol/L, respectively (allWe presented practical and detailed examples for estimating measurement uncertainty by the two approaches. The uncertainties by the bottom-up approach were quite similar to those by the top-down approach. Thus, we demonstrated that the two approaches were approximately equivalent and interchangeable and concluded that clinical laboratories could determine measurement uncertainty by the simpler top-down approach.


PsycCRITIQUES ◽  
2005 ◽  
Vol 50 (19) ◽  
Author(s):  
Michael Cole
Keyword(s):  
Top Down ◽  

Author(s):  
Sadari Sadari ◽  
Nurhidayat Nurhidayat ◽  
Rafiqah Rafiqah
Keyword(s):  
Top Down ◽  

Humanisme religius telah mengantarkan pada era kesadaran bahwa peradaban manusia harus memiliki dua arus yang saling menunjang. Selama ini arus balik dalam bidang ekonomi hanya menonjolkan arus balik vertikal atas kebawah (model top down) yang didominasi oleh sistem ekonomi kapitalis dan sosialis, sedangkan di sisi lain mengesampingkan arus balik vertikal dari bawah ke atas (model bottom up) yang didominasi oleh sistem ekonomi syariah, sehingga dampaknya adalah adanya kesenjangan ekonomi yang sangat tajam. Paper ini mewujudkan peran penting, yakni menghubungkan dua arus tersebut secara timbal-balik, yakni mempertemukan arus pertama dengan arus balik kedua, sehingga akan menghasilkan dampak yang positif, progresif, kreatif dan produktif, kemudian pada akhirnya akan dapat meng-optomal-kan ekonomi syariah untuk menciptakan goodgovernance, post goodgovernance secara berkelanjutan, tentunya dengan bantuan peran media kontemporer yang kian update. Ekonomi syariah juga merupakan pilar dan nilai dasar, dari sikap keyakinan dan sikap rasionalitas untuk sanggup menciptakan terwujudnya pemberdayaan dan kesejahteraan sekaligus pengentasan kemiskinan dalam masyarakat di Indonesia.


Sign in / Sign up

Export Citation Format

Share Document