scholarly journals Supplementary material to "Speciation of anthropogenic emissions of non-methane volatile organic compounds: a global gridded data set for 1970–2012"

Author(s):  
Ganlin Huang ◽  
Rosie Brook ◽  
Monica Crippa ◽  
Greet Janssens-Maenhout ◽  
Christian Schieberle ◽  
...  
2017 ◽  
Author(s):  
Ganlin Huang ◽  
Rosie Brook ◽  
Monica Crippa ◽  
Greet Janssens-Maenhout ◽  
Christian Schieberle ◽  
...  

Abstract. Non-methane volatile organic compounds (NMVOC) include a large number of chemical species which differ significantly in their chemical characteristics and thus in their impacts on ozone and secondary organic aerosols formation. It is important that chemical transport models (CTMs) simulate the chemical transformation of the different NMVOC species in the troposphere consistently. In most emission inventories, however, only total NMVOC emissions are reported, which need to be decomposed into classes to fit the requirements of CTMs. For instance, the Emissions Database for Global Atmospheric Research (EDGAR) provides spatially resolved global anthropogenic emissions of total NMVOC. In this study the EDGAR NMVOC inventory was revised and extended in time and in sectors. Moreover the new version of NMVOC emission data in the EDGAR database were disaggregated on a high sector resolution to individual species or species groups, thus enhancing the usability of the NMVOC emission data by the modelling community. Region- and source-specific speciation profiles of NMVOC species or species groups, are compiled and mapped to EDGAR processes (high resolution of sectors), with corresponding quality codes specifying the quality of the mapping. Individual NMVOC species in different profiles are aggregated to 25 species groups, in line with the common classification of the Global Emissions Initiative (GEIA). Global annual grid maps with a resolution of 0.1° × 0.1° for the period 1970–2012 are produced by sector and species. Furthermore, trends of NMVOC composition are analysed taking road transport and residential sources in Germany and the United Kingdom (UK) as examples.


2017 ◽  
Vol 17 (12) ◽  
pp. 7683-7701 ◽  
Author(s):  
Ganlin Huang ◽  
Rosie Brook ◽  
Monica Crippa ◽  
Greet Janssens-Maenhout ◽  
Christian Schieberle ◽  
...  

Abstract. Non-methane volatile organic compounds (NMVOCs) include a large number of chemical species which differ significantly in their chemical characteristics and thus in their impacts on ozone and secondary organic aerosol formation. It is important that chemical transport models (CTMs) simulate the chemical transformation of the different NMVOC species in the troposphere consistently. In most emission inventories, however, only total NMVOC emissions are reported, which need to be decomposed into classes to fit the requirements of CTMs. For instance, the Emissions Database for Global Atmospheric Research (EDGAR) provides spatially resolved global anthropogenic emissions of total NMVOCs. In this study the EDGAR NMVOC inventory was revised and extended in time and in sectors. Moreover the new version of NMVOC emission data in the EDGAR database were disaggregated on a detailed sector resolution to individual species or species groups, thus enhancing the usability of the NMVOC emission data by the modelling community. Region- and source-specific speciation profiles of NMVOC species or species groups are compiled and mapped to EDGAR processes (detailed resolution of sectors), with corresponding quality codes specifying the quality of the mapping. Individual NMVOC species in different profiles are aggregated to 25 species groups, in line with the common classification of the Global Emissions Initiative (GEIA). Global annual grid maps with a resolution of 0.1°  ×  0.1° for the period 1970–2012 are produced by sector and species. Furthermore, trends in NMVOC composition are analysed, taking road transport and residential sources in Germany and the United Kingdom (UK) as examples.


2005 ◽  
Vol 5 (3) ◽  
pp. 2599-2642 ◽  
Author(s):  
A. Petzold ◽  
M. Gysel ◽  
X. Vancassel ◽  
R. Hitzenberger ◽  
H. Puxbaum ◽  
...  

Abstract. The European PartEmis project (''Measurement and prediction of emissions of aerosols and gaseous precursors from gas turbine engines'') was focussed on the characterisation and quantification of exhaust emissions from a gas turbine engine. A comprehensive suite of aerosol, gas and chemi-ion measurements were conducted under different combustor operating conditions and fuel sulphur concentrations. Combustion aerosol characterisation included on-line measurements of mass and number concentration, size distribution, mixing state, thermal stability of internally mixed particles, hygroscopicity, cloud condensation nuclei (CCN) activation potential, and off-line analysis of chemical composition. Modelling of CCN activation of combustion particles was conducted using microphysical and chemical properties obtained from the measurements as input data. Based on this unique data set, the role of sulphuric acid coatings on the combustion particles, formed in the cooling exhaust plume through either direct condensation of gaseous sulphuric acid or coagulation with volatile condensation particles nucleating from gaseous sulphuric acid, and the role of the organic fraction for the CCN activation of combustion particles was investigated. It was found that particles containing a large fraction of non-volatile organic compounds grow significantly less at high relative humidity than particles with a lower content of non-volatile OC. Also the effect of the non-volatile OC fraction on the potential CCN activation is significant. While a coating of water-soluble sulphuric acid increases the potential CCN activation, or lowers the activation diameter, respectively, the non-volatile organic compounds, mainly found at lower combustion temperatures, can partially compensate this sulphuric acid-related enhancement of CCN activation of carbonaceous combustion aerosol particles.


Sign in / Sign up

Export Citation Format

Share Document