scholarly journals Graphics Algorithm for Deriving Atmospheric Boundary Layer Heights from CALIPSO Data

Author(s):  
Boming Liu ◽  
Yingying Ma ◽  
Jiqiao Liu ◽  
Wei Gong ◽  
Wei Wang ◽  
...  

Abstract. The atmospheric boundary layer is an important atmospheric feature that affects environmental health and weather forecasting. In this study, we proposed a graphics algorithm for the derivation of atmospheric boundary layer height (BLH) from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) data. Owing to the differences in scattering intensity between molecular and aerosol particles, the total attenuated backscatter coefficient 532 and attenuated backscatter coefficient 1064 were used simultaneously for BLH detection. The proposed algorithm transformed the gradient solution into graphics distribution solution to overcome the effects of large noise and improve the horizontal resolution. This method was then tested with real signals under different horizontal smoothing numbers (1, 3, 15 and 30). The algorithm provided a reliable result when the horizontal smoothing number was greater than 5. Finally, the results of BLH obtained by CALIPSO data were compared with the results retrieved by the ground-based Lidar and radiosonde (RS) measurements. Under the horizontal smoothing number of 15, 9 and 3, the correlation coefficients between the BLH derived by the proposed algorithm and ground-based Lidar were 0.72, 0.72 and 0.14, respectively, and those between the BLH derived by the proposed algorithm and radiosonde measurements were 0.59, 0.59 and 0.07. When the horizontal smoothing number was 15 and 9, the CALIPSO BLH derived by the proposed method demonstrated a good correlation with ground-based Lidar and RS. This finding indicated that the proposed algorithm can be applied to the CALIPSO satellite data with 3 and 5 km horizontal resolution.

2018 ◽  
Vol 11 (9) ◽  
pp. 5075-5085 ◽  
Author(s):  
Boming Liu ◽  
Yingying Ma ◽  
Jiqiao Liu ◽  
Wei Gong ◽  
Wei Wang ◽  
...  

Abstract. The atmospheric boundary layer is an important atmospheric feature that affects environmental health and weather forecasting. In this study, we proposed a graphics algorithm for the derivation of atmospheric boundary layer height (BLH) from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) data. Owing to the differences in scattering intensity between molecular and aerosol particles, the total attenuated backscatter coefficient 532 and attenuated backscatter coefficient 1064 were used simultaneously for BLH detection. The proposed algorithm transformed the gradient solution into graphics distribution solution to overcome the effects of large noise and improve the horizontal resolution. This method was then tested with real signals under different horizontal smoothing numbers (1, 3, 15 and 30). Finally, the results of BLH obtained by CALIPSO data were compared with the results retrieved by the ground-based lidar measurements. Under the horizontal smoothing number of 15, 12 and 9, the correlation coefficients between the BLH derived by the proposed algorithm and ground-based lidar were both 0.72. Under the horizontal smoothing number of 6, 3 and 1, the correlation coefficients between the BLH derived by graphics distribution method (GDM) algorithm and ground-based lidar were 0.47, 0.14 and 0.12, respectively. When the horizontal smoothing number was large (15, 12 and 9), the CALIPSO BLH derived by the proposed method demonstrated a good correlation with ground-based lidar. The algorithm provided a reliable result when the horizontal smoothing number was greater than 9. This finding indicated that the proposed algorithm can be applied to the CALIPSO satellite data with 3 and 5 km horizontal resolution.


Atmosphere ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1457
Author(s):  
Jiaqi Shi ◽  
Kefei Zhang ◽  
Suqin Wu ◽  
Shuangshuang Shi ◽  
Zhen Shen

This study investigated the relationship between variations in the atmospheric boundary layer height (ABLH) and typhoons over the Northwest Pacific using global navigation satellite system (GNSS) radio occultation (RO) data during the local summer typhoon season (July–October in the Northern Hemisphere) from 2007 to 2020. The minimum gradient of refractivity derived from COSMIC and COSMIC-2 was used to determine the ABLH. The RO profiles were co-located with the position of a typhoon track base within a 600 km space window and different time windows. ABLH climatology with a 2.5° × 2.5° horizontal resolution was developed, which can be used to obtain the interpolated mean ABLH at any target position. The mean ABLH at the central typhoon position in a specific year was compared with the results interpolated from the climatology of the same location (excluding the year in which the investigated typhoon occurred). In this paper, the results indicate that the ABLH is lower in the vicinity of typhoons relative to the undisturbed atmosphere by a significant amount, and that the reduction in ABLH ranges from 0.13 km to 0.39 km. It was also found that the ABLH was negatively correlated with wind speed, and that the mean correlation coefficient was −0.607. Moreover, similar results can be obtained via the RO water vapor partial pressure profile compared to the refractivity results.


2014 ◽  
Vol 7 (1) ◽  
pp. 173-182 ◽  
Author(s):  
T. Luo ◽  
R. Yuan ◽  
Z. Wang

Abstract. Atmospheric boundary layer (ABL) processes are important in climate, weather and air quality. A better understanding of the structure and the behavior of the ABL is required for understanding and modeling of the chemistry and dynamics of the atmosphere on all scales. Based on the systematic variations of the ABL structures over different surfaces, different lidar-based methods were developed and evaluated to determine the boundary layer height and mixing layer height over land and ocean. With Atmospheric Radiation Measurement Program (ARM) Climate Research Facility (ACRF) micropulse lidar (MPL) and radiosonde measurements, diurnal and season cycles of atmospheric boundary layer depth and the ABL vertical structure over ocean and land are analyzed. The new methods are then applied to satellite lidar measurements. The aerosol-derived global marine boundary layer heights are evaluated with marine ABL stratiform cloud top heights and results show a good agreement between them.


2014 ◽  
Vol 52 (8) ◽  
pp. 4717-4728 ◽  
Author(s):  
Diego Lange ◽  
Jordi Tiana-Alsina ◽  
Umar Saeed ◽  
Sergio Tomas ◽  
Francesc Rocadenbosch

Sign in / Sign up

Export Citation Format

Share Document