urban sites
Recently Published Documents


TOTAL DOCUMENTS

530
(FIVE YEARS 157)

H-INDEX

45
(FIVE YEARS 6)

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Mohammad A. Rahman ◽  
Eleonora Franceschi ◽  
Nayanesh Pattnaik ◽  
Astrid Moser-Reischl ◽  
Christian Hartmann ◽  
...  

AbstractGreen infrastructure (GI) has emerged as a feasible strategy for promoting adaptive capacities of cities to climate change by alleviating urban heat island (UHI) and thus heat stress for humans. However, GI can also intensify the winter cold stress. To understand the extent of UHI within a city as well as the link between outdoor thermal stress both diurnally and seasonally, we carried out an empirical study in Würzburg, Germany from 2018 to 2020. At sub-urban sites, relative humidity and wind speed (WS) was considerably higher and air temperature (AT) lower compared to the inner city sites. Mean AT of inner city sites were higher by 1.3 °C during summer and 5 °C during winter compared to sub-urban sites. The magnitude followed the spatial land use patterns, in particular the amount of buildings. Consequently, out of 97 hot days (AT > 30 °C) in 3 years, 9 days above the extreme threshold of wet bulb globe temperature of 35 °C were recorded at a centre location compared to none at a sub-urban site. Extreme heat stress could be halved with 30–40% cover of greenspaces including grass lawns, green roofs, and green walls with little compromise in increasing winter cold stress.


Atmosphere ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 114
Author(s):  
Subraham Singh ◽  
Ilias G. Kavouras

The spatiotemporal patterns of ground level ozone (O3) concentrations in the New York City (NYC) metropolitan region for the 2007–2017 period were examined conjointly with local emissions of O3 precursors and the frequency of wildfires. Daily 8-h and 1-h O3 and nitric oxide (NO) concentrations were retrieved from the US Environmental Protection Agency (EPA) Air Data. Annual emission inventories for 2008 and 2017 were acquired from EPA National Emissions Inventory (NEI). The number and area burnt by natural and human-ignited wildfires were acquired from the National Interagency Fire Center (NIFC). The highest daily 8-h max O3 concentrations varied from 90 to 111 parts per billion volume (ppbv) with the highest concentrations measured perimetrically to NYC urban agglomeration. The monthly 8-h max O3 levels have been declining for most of the peri-urban sites but increasing (from +0.18 to +1.39 ppbv/year) for sites within the urban agglomeration. Slightly higher O3 concentrations were measured during weekend than those measured during the weekdays in urban sites probably due to reduced O3 titration by NO. Significant reductions of locally emitted anthropogenic nitrogen oxides (NOx) and volatile organic compounds (VOCs) may have triggered the transition from VOC-limited to NOX-limited conditions, with downwind VOCs sources being critically important. Strong correlations between the monthly 8-h max O3 concentrations and wildfires in Eastern US were computed. More and destructive wildfires in the region were ignited by lightning for years with moderate and strong La Niña conditions. These findings indicate that climate change may counterbalance current and future gains on O3 precursor’s reductions by amending the VOCs-to-NOx balance.


Atmosphere ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 97
Author(s):  
Milagros Ródenas ◽  
Rubén Soler ◽  
Esther Borrás ◽  
Teresa Vera ◽  
José Jaime Diéguez ◽  
...  

In early 2020, the COVID-19 pandemic spread globally, and severe measures to control it were implemented. This study investigates the impact of the lockdown on the air quality of three provinces in the Valencia region, eastern Spain, in the years 2015–2020, focusing on particulate matter (PM). A thorough statistical analysis using different approaches is conducted. Hourly patterns are also assessed. In addition, the role of meteorological parameters on PM is explored. The results indicate an overall PM10 reduction of 16.5% when comparing the lockdown in 2020 and the 2015–2019 period, while PM2.5 increased by 3.1%. As expected, urban zones experienced higher reductions than suburban zones, which experienced a PM concentration increase. The impact of the drastic drops of benzene, toluene and xylene (77.4%, 58.0% and 61.8%, respectively) on the PM values observed in urban sites is discussed. Our study provides insights on the effect of activity changes over a wide region covering a variety of air quality stations, urban, suburban and rural, and different emission types. The results of this work are a valuable reference and suggest the need for considering different factors when establishing scientific air pollution control strategies.


2022 ◽  
Author(s):  
Rebecca French ◽  
Justine Charon ◽  
Callum Le Lay ◽  
Chris Muller ◽  
Edward C Holmes

Although water borne viruses have important implications for the health of humans and other animals, little is known about the impact of human land use on viral diversity and evolution in water systems such as rivers. We used metagenomic next generation sequencing to compare the diversity and abundance of viruses at sampling sites along a single river in New Zealand that differed in human land use impact, ranging from pristine to urban. From this we identified 504 putative virus species, of which 97% were novel. Many of the novel viruses were highly divergent, and likely included a new subfamily within the Parvoviridae. We identified at least 63 virus species that may infect vertebrates, most likely fish and water birds, from the Astroviridae, Birnaviridae, Parvoviridae and Picornaviridae. No putative human viruses were detected. Importantly, we observed differences in the composition of viral communities at sites impacted by human land use (farming and urban) compared to native forest sites (pristine). At the viral species level, the urban sites had higher diversity (327 virus species) than the farming (n=150) and pristine sites (n=119), and more viruses were shared between the urban and farming sites (n=76) than between the pristine and farming or urban sites (n=24). The two farming sites had a lower viral abundance across all host types, while the pristine sites had a higher abundance of viruses associated with animals, plants and fungi. We also identified viruses linked to agriculture and human impact at the river sampling sites in farming and urban areas that were not present at the native forest sites. Overall, our study shows that human land use can impact viral communities in rivers, such that further work is needed to reduce the impact of intensive farming and urbanization on water systems.


2022 ◽  
Vol 159 ◽  
pp. 107031
Author(s):  
Huanbo Wang ◽  
Leiming Zhang ◽  
Xiaohong Yao ◽  
Irene Cheng ◽  
Ewa Dabek-Zlotorzynska
Keyword(s):  

Environments ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 5
Author(s):  
Quirine M. Cohen ◽  
Mae Glaese ◽  
Ke Meng ◽  
Violette Geissen ◽  
Esperanza Huerta-Lwanga

Soils of parks and recreational areas are potential sinks of microplastics because they are under multifunctional use. The aims of this research were to quantify and determine the types and abundance of light-density microplastics in one of the most cosmopolitan cities of the world: Amsterdam, the Netherlands. Therefore, potential differences between the city districts were explored through the assessment of light-density microplastics’ concentrations in soils together with the soil properties. Microplastics were extracted from 74 soil samples. Predictions of microplastic concentrations and soil characteristics were made for the entire city by using ordinary kriging; 97% of the samples contained microplastic particles (MPPs), and on average, there were 4825.31 ± 6513.85 MPP/kg soil. A total of 21 hotspot samples were identified, and all of them contained LDPE, which represented 40.82% of the plastic types, in addition to 35.06% PAC and 15.58% natural polyamide. Other types of plastics were PP (0.19%), PS (1.30%), bioplastic (0.19%), PA (0.37%), PU (0.56), PVC (0.19%), and unidentified plastics (0.19%). There were no significant differences in MPP concentration between city districts. Our results showed that MPPs are abundant in urban soils, which represents a high risk for soil life. Further studies are required for identifying the sources of this pollution.


Atmosphere ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 10
Author(s):  
Min Cai ◽  
Yangang Ren ◽  
Rodrigo G. Gibilisco ◽  
Benoit Grosselin ◽  
Max R. McGillen ◽  
...  

During the period from 17 March to 10 May 2020, France saw dramatic shifts in domestic, industrial and transport activities as a national lockdown was introduced. So far, studies have generally focused on urban settings, by contrast, this work reports data for a peri-urban location. Air samples were collected and analyzed using a fully automated GC-MS-FID system in an air quality monitoring station situated in the suburbs of Orléans, France. Average concentrations of BTEX (benzene, toluene, ethylbenzene, and xylenes) before, during, and after lockdown, were 402 ± 143, 800 ± 378 and 851 ± 445 pptv, respectively. Diurnal variation in BTEX and correlations between each of its components were analyzed to determine its various sources. The toluene/benzene (T/B) and m,p-xylene/ethylbenzene (MP/E) ratios, photochemical ages were used to explore whether the BTEX were from local or more distant sources. Together with a host of complementary measurements including NOx, O3, black carbon, meteorological parameters, and anthropogenic activities, we were able to make some inferences on the sources of BTEX. The results suggest that although anomalous local anthropogenic activity can lead to significant changes in BTEX concentrations, pollution levels in Orléans are mostly dependent on meteorological conditions, specifically whether the winds are coming from the Paris region. It appears, based on these measurements, that the pollution in the Orléans area is very much tied to the nearby megacity of Paris, this may be true for other peri-urban sites with implications for city planning and pollution mitigation strategies.


2021 ◽  
Vol 946 (1) ◽  
pp. 012039
Author(s):  
V V Kaganov

Abstract The article presents the study results on epiphytic mosses. The research area is Yuzhno-Sakhalinsk and its surroundings. To assess the epiphytic cover the method of occurrence measuring on the tree trunks with the help of a frame 10×40 cm (400 cm2) was used at 15 locations within the study region. 15 species of epiphyte moss and their distribution characteristics were identified. Populus maximowiczii A. Henri was selected as a substrate because it predominates in urban vegetation and grows naturally in floodplain areas where control plots were set up.


2021 ◽  
Vol 9 (12) ◽  
pp. e1688-e1696
Author(s):  
James E Meiring ◽  
Mila Shakya ◽  
Farhana Khanam ◽  
Merryn Voysey ◽  
Maile T Phillips ◽  
...  

2021 ◽  
Vol 45 (1) ◽  
Author(s):  
Lee Hakbong ◽  
Cho Yong-Chan ◽  
Jung Sang-Woo ◽  
Kim Yoon-Ho ◽  
Lee Seung-Gyu

Abstract Background Artificial light at night has recently been identified as a major factor adversely affecting global insect diversity. Here, we compared the insect diversity in Gwangneung Forest Biosphere Reserve, specifically in the Korea National Arboretum (with no artificial light at night), with that of three nearby urban sites with a gradient of artificial light at night (five locations at each site). We analyzed the effects of the artificial night lighting index, mean annual temperature, and field light intensity (lux) at night on the insect community structure. Results The urban sites generally exhibited higher species richness and abundance as well as clear indicator species compared with the control site. The size distribution of the collected insects markedly differed between the control and the three urban sites. The abundance of herbivorous and omnivorous insects increased and decreased, respectively, with the increase in light intensity. Species richness of herbivorous and omnivorous insects was likely correlated with the field light intensity at night and artificial night lighting index, respectively. Conclusions This study demonstrates the association between nighttime environment and marked changes in insect community structure and revealed consequent transition of ecosystem services by changes in trophic group composition.


Sign in / Sign up

Export Citation Format

Share Document