scholarly journals Organic particle types by single-particle measurements using a time-of-flight aerosol mass spectrometer coupled with a light scattering module

2013 ◽  
Vol 6 (2) ◽  
pp. 187-197 ◽  
Author(s):  
S. Liu ◽  
L. M. Russell ◽  
D. T. Sueper ◽  
T. B. Onasch

Abstract. Chemical and physical properties of individual ambient aerosol particles can vary greatly, so measuring the chemical composition at the single-particle level is essential for understanding atmospheric sources and transformations. Here we describe 46 days of single-particle measurements of atmospheric particles using a time-of-flight aerosol mass spectrometer coupled with a light scattering module (LS-ToF-AMS). The light scattering module optically detects particles larger than 180 nm vacuum aerodynamic diameter (130 nm geometric diameter) before they arrive at the chemical mass spectrometer and then triggers the saving of single-particle mass spectra. 271 641 particles were detected and sampled during 237 h of sampling in single-particle mode. By comparing timing of the predicted chemical ion signals from the light scattering measurement with the measured chemical ion signals by the mass spectrometer for each particle, particle types were classified and their number fractions determined as follows: prompt vaporization (46%), delayed vaporization (6%), and null (48%), where null was operationally defined as less than 6 ions per particle. Prompt and delayed vaporization particles with sufficient chemical information (i.e., more than 40 ions per particle) were clustered based on similarity of organic mass spectra (using k-means algorithm) to result in three major clusters: highly oxidized particles (dominated by m/z 44), relatively less oxidized particles (dominated by m/z 43), and particles associated with fresh urban emissions. Each of the three organic clusters had limited chemical properties of other clusters, suggesting that all of the sampled organic particle types were internally mixed to some degree; however, the internal mixing was never uniform and distinct particle types existed throughout the study. Furthermore, the single-particle mass spectra and time series of these clusters agreed well with mass-based components identified (using factor analysis) from simultaneous ensemble-averaged measurements, supporting the connection between ensemble-based factors and atmospheric particle sources and processes. Measurements in this study illustrate that LS-ToF-AMS provides unique information about organic particle types by number as well as mass.

2012 ◽  
Vol 5 (2) ◽  
pp. 3047-3077 ◽  
Author(s):  
S. Liu ◽  
L. M. Russell ◽  
D. T. Sueper ◽  
T. B. Onasch

Abstract. Chemical and physical properties of individual ambient aerosol particles can vary greatly, so measuring the chemical composition at the single-particle level is essential for understanding atmospheric sources and transformations. Here we describe 46 days of single-particle measurements of atmospheric particles using a time-of-flight aerosol mass spectrometer coupled with a light scattering module (LS-ToF-AMS). The light scattering module optically detects particles larger than 180 nm vacuum aerodynamic diameter (130 nm geometric diameter) (with size resolution of 5–10 defined as dΔd at full width at half maximum) before they arrive at the chemical mass detector and then triggers the saving of single-particle mass spectra. 271 641 particles were detected and sampled during 237 h of sampling in single particle mode. By comparing the timing of light scattering and chemical ion signals for each particle, particle types were classified and their number fractions determined as follows: prompt vaporization (49%), delayed vaporization (7%), and null (44%). LS-ToF-AMS provided the first direct measurement of the size-resolved collection efficiency (CE) of ambient particles, with an approximate 50% number-based CE for particles above detection limit. Prompt and delayed vaporization particles (147 357 particles) were clustered based on similar organic mass spectra (using K-means algorithm) to result in three major clusters: highly oxidized particles (dominated by m/z 44), relatively less oxidized particles (dominated by m/z 43), and particles associated with fresh urban emissions. Each of the three organic clusters had limited chemical properties of other clusters, suggesting that all of the sampled organic particle types were internally mixed to some degree; however, the internal mixing was never uniform and distinct particle types existed throughout the study. Furthermore, the single particle mass spectra and diurnal variations of these clusters agreed well with mass-based components identified (using factor analysis) from simultaneous ensemble-averaged measurements, supporting the connection between ensemble-based factors and atmospheric particle sources and processes. Measurements in this study illustrate that LS-ToF-AMS provides unique information about organic particle types by number as well as mass.


2017 ◽  
Vol 10 (10) ◽  
pp. 3801-3820 ◽  
Author(s):  
Jin Liao ◽  
Charles A. Brock ◽  
Daniel M. Murphy ◽  
Donna T. Sueper ◽  
André Welti ◽  
...  

Abstract. A light-scattering module was coupled to an airborne, compact time-of-flight aerosol mass spectrometer (LS-AMS) to investigate collection efficiency (CE) while obtaining nonrefractory aerosol chemical composition measurements during the Southeast Nexus (SENEX) campaign. In this instrument, particles scatter light from an internal laser beam and trigger saving individual particle mass spectra. Nearly all of the single-particle data with mass spectra that were triggered by scattered light signals were from particles larger than ∼ 280 nm in vacuum aerodynamic diameter. Over 33 000 particles are characterized as either prompt (27 %), delayed (15 %), or null (58 %), according to the time and intensity of their total mass spectral signals. The particle mass from single-particle spectra is proportional to that derived from the light-scattering diameter (dva-LS) but not to that from the particle time-of-flight (PToF) diameter (dva-MS) from the time of the maximum mass spectral signal. The total mass spectral signal from delayed particles was about 80 % of that from prompt ones for the same dva-LS. Both field and laboratory data indicate that the relative intensities of various ions in the prompt spectra show more fragmentation compared to the delayed spectra. The particles with a delayed mass spectral signal likely bounced off the vaporizer and vaporized later on another surface within the confines of the ionization source. Because delayed particles are detected by the mass spectrometer later than expected from their dva-LS size, they can affect the interpretation of particle size (PToF) mass distributions, especially at larger sizes. The CE, measured by the average number or mass fractions of particles optically detected that had measurable mass spectra, varied significantly (0.2–0.9) in different air masses. The measured CE agreed well with a previous parameterization when CE > 0.5 for acidic particles but was sometimes lower than the minimum parameterized CE of 0.5.


2009 ◽  
Vol 9 (20) ◽  
pp. 7769-7793 ◽  
Author(s):  
E. S. Cross ◽  
T. B. Onasch ◽  
M. Canagaratna ◽  
J. T. Jayne ◽  
J. Kimmel ◽  
...  

Abstract. We present the first single particle results obtained with an Aerodyne time-of-flight aerosol mass spectrometer coupled with a light scattering module (LS-ToF-AMS). The instrument was deployed at the T1 ground site approximately 40 km northeast of the Mexico City Metropolitan Area as part of the MILAGRO field study in March of 2006. The LS-ToF-AMS acquires both ensemble average and single particle data. Over a 75-h sampling period from 27–30 March 2006, 12 853 single particle mass spectra were optically-triggered and saved. The single particles were classified based on observed vaporization histories and measured chemical compositions. The single particle data is shown to provide insights on internal AMS collection efficiencies and ambient mixing state information that augments the ensemble data. Detection of correlated light scattering and chemical ion signals allowed for a detailed examination of the vaporization/ionization process for single particles measured with the AMS instrument. Three particle vaporization event types were identified as a fraction of the total number of particles detected: (1) 23% with prompt vaporization, (2) 26% with delayed vaporization, and (3) 51% characterized as null. Internal consistency checks show that average single particle nonrefractory mass and chemical composition measurements were in reasonable agreement with ensemble measurements and suggest that delayed and null vaporization events are the dominant source of the nonunit collection efficiency of the AMS. Taken together, the simultaneous prompt single particle and aerosol ensemble measurements offer insight into the mixing state and atmospheric transformations of ambient aerosol particles.


2017 ◽  
Author(s):  
Jin Liao ◽  
Charles A. Brock ◽  
Daniel M. Murphy ◽  
Donna T. Sueper ◽  
André Welti ◽  
...  

Abstract. A light scattering module was coupled to an airborne, compact time-of-flight aerosol mass spectrometer (LS-ToF-AMS) to investigate collection efficiency (CE) while obtaining non-refractory aerosol chemical composition measurements during the Southeast Nexus (SENEX) campaign. In this instrument, particles typically larger than ~ 250 nm in vacuum aerodynamic diameter scatter light from an internal laser beam and trigger saving individual particle mass spectra. Over 33,000 particles are characterized as either prompt (27 %), delayed (15 %), or null (58 %), according to the appearance time and intensity of their mass spectral signals. The individual particle mass from the spectra is proportional to the mass derived from the vacuum aerodynamic diameter determined by the light scattering signals (dva-LS) rather than the traditional particle time-of-flight (PToF) size (dva). The delayed particles capture about 80 % of the total chemical mass compared to prompt ones. Both field and laboratory data indicate that the relative intensities of various ions in the prompt spectra show more fragmentation compared to the delayed spectra. The particles with a delayed mass spectral signal likely bounced on the vaporizer and vaporized later on a lower temperature surface within the confines of the ionization source. Because delayed particles are detected at a later time by the mass spectrometer than expected, they can affect the interpretation of PToF mass distributions especially at the larger sizes. CE, measured by the average number or mass fractions of particles optically detected that have measureable mass spectra, varied significantly (0.2–0.9) in different air masses. Relatively higher null fractions and corresponding lower CE for this study may have been related to the lower sensitivity of the AMS during SENEX. The measured CE generally agreed with the CE parameterization based on ambient chemical composition, including for acidic particles that had a higher CE as expected from previous studies.


2008 ◽  
Vol 8 (6) ◽  
pp. 21313-21381 ◽  
Author(s):  
E. S. Cross ◽  
T. B. Onasch ◽  
M. Canagaratna ◽  
J. T. Jayne ◽  
J. Kimmel ◽  
...  

Abstract. We present the first single particle results obtained using an Aerodyne time-of-flight aerosol mass spectrometer coupled with a light scattering module (LS-ToF-AMS). The instrument was deployed at the T1 ground site approximately 40 km northeast of the Mexico City Metropolitan Area (MCMA) as part of the MILAGRO field study in March of 2006. The instrument was operated as a standard AMS from 12–30 March, acquiring average chemical composition and size distributions for the ambient aerosol, and in single particle mode from 27–30 March. Over a 75-h sampling period, 12 853 single particle mass spectra were optically triggered, saved, and analyzed. The correlated optical and chemical detection allowed detailed examination of single particle collection and quantification within the LS-ToF-AMS. The single particle data enabled the mixing states of the ambient aerosol to be characterized within the context of the size-resolved ensemble chemical information. The particulate mixing states were examined as a function of sampling time and most of the particles were found to be internal mixtures containing many of the organic and inorganic species identified in the ensemble analysis. The single particle mass spectra were deconvolved, using techniques developed for ensemble AMS data analysis, into HOA, OOA, NH4NO3, (NH4)2SO4, and NH4Cl fractions. Average single particle mass and chemistry measurements are shown to be in agreement with ensemble MS and PTOF measurements. While a significant fraction of ambient particles were internal mixtures of varying degrees, single particle measurements of chemical composition allowed the identification of time periods during which the ambient ensemble was externally mixed. In some cases the chemical composition of the particles suggested a likely source. Throughout the full sampling period, the ambient ensemble was an external mixture of combustion-generated HOA particles from local sources (e.g. traffic), with number concentrations peaking during morning rush hour (04:00–08:00 LT) each day, and more processed particles of mixed composition from nonspecific sources. From 09:00–12:00 LT all particles within the ambient ensemble, including the locally produced HOA particles, became coated with NH4NO3 due to photochemical production of HNO3. The number concentration of externally mixed HOA particles remained low during daylight hours. Throughout the afternoon the OOA component dominated the organic fraction of the single particles, likely due to secondary organic aerosol formation and condensation. Single particle mass fractions of (NH4)2SO4 were lowest during the day and highest during the night. In one instance, gas-to-particle condensation of (NH4)2SO4 was observed on all measured particles within a strong SO2 plume arriving at T1 from the northwest. Particles with high NH4Cl mass fractions were identified during early morning periods. A limited number of particles (~5% of the total number) with mass spectral features characteristic of biomass burning were also identified.


2013 ◽  
Vol 6 (3) ◽  
pp. 5653-5691 ◽  
Author(s):  
F. Freutel ◽  
F. Drewnick ◽  
J. Schneider ◽  
T. Klimach ◽  
S. Borrmann

Abstract. Single particle mass spectrometry has proven a valuable tool for gaining information on the mixing state of aerosol particles. With the Aerodyne aerosol mass spectrometer (AMS) equipped with a light scattering probe, non-refractory components of submicron particles with diameters larger than about 300 nm can even be quantified on a single particle basis. Here, we present a new method for the analysis of AMS single particle mass spectra. The developed algorithm classifies the particles according to their components (e.g., sulphate, nitrate, different types of organics) and simultaneously provides quantitative information about the composition of the single particles. This classification algorithm was validated by applying it to data acquired in laboratory experiments with particles of known composition, and applied to field data acquired during the MEGAPOLI summer campaign (July 2009) in Paris. As shown, it is not only possible to directly measure the mixing state of atmospheric particles, but also to directly observe repartitioning of semi-volatile species between gas and particle phase during the course of the day.


Sign in / Sign up

Export Citation Format

Share Document