collection efficiency
Recently Published Documents


TOTAL DOCUMENTS

2079
(FIVE YEARS 420)

H-INDEX

55
(FIVE YEARS 9)

2022 ◽  
Vol 14 (2) ◽  
pp. 902
Author(s):  
Aleksandras Chlebnikovas ◽  
Dainius Paliulis ◽  
Kristina Kilikevičienė ◽  
Artūras Kilikevičius

Cyclones are widely used for separating particles from gas in energy production objects. The efficiency of conventional centrifugal air cleaning devices ranges from 85 to 90%, but the weakness of many cyclones is the low collection efficiency of particles less than 10 μm in diameter. The novelty of this work is the research of the channel-type treatment device, with few levels adapted for precipitation of fine particulate matter, acting by a centrifugal and filtration principle. Many factors have an impact on cyclone efficiency—humidity, temperature, gas (air) composition, airflow velocity and etc. Many scientists evaluated only the effect of origin and size of PM on cyclone efficiency. The effect of gas (air) composition and temperature, and humidity on the multi-channel cyclone-separator efficiency still demands contributions. Complex theoretical and experimental research on air flow parameters and the efficiency of a cylindrical eight-channel system with adjustable half-rings for removing fine-dispersive particles (<20 μm) was carried out. The impact of air humidity and temperature on air flow, and gaseous smoke components on the removal of wood ashes was analyzed. The dusty gas flow was regulated. During the experiment, the average velocity of the cyclone was 16 m/s, and the temperature was 20–50 °C. The current paper presents experimental research results of wood ash removal in an eight-channel cyclone and theoretical methodology for the calculation of airflow parameters and cyclone effectiveness.


2022 ◽  
Author(s):  
Kyohei Fukuda ◽  
Mie Yoshida ◽  
Kensuke Noto ◽  
Kouichi Kitabayashi ◽  
Shinjirou Katsushima ◽  
...  

Abstract A prototype virus sampler using electrostatic precipitation has been developed to investigate aerosol infection by SARS-CoV-2. The sampler consists of a discharge electrode placed inside a vial, and a thin layer of viral lysis buffer at the bottom, working as a collection electrode. The sampler was operated with the sampling air flow rate of 40 L/min. Collection efficiency of the sampler is about 80% for 25nm to 5.0µm diameter particles. We sampled the air of a food court of a commercial facility, a connecting corridor of a clouded train station, and two office rooms (A and B) in September 2021, just after the 5th peak of COVID-19 in Japan. The analysis using a RT-qPCR detected the virus RNA in the air of the office A, B and the food court. Estimated concentration of the virus in the air determined by calibration curve was 2.0 x 102, 7.8 x 102, and 0.6 - 2.4 x 102 copies/m3, in the office A, B, and the food court, respectively. These results indicate that the sampler using electrostatic precipitation can detect SARS-CoV-2 in indoor air. It could be developed as a risk assessment method for aerosol infection.


Author(s):  
Jun-Hyung Lim ◽  
Sang Hwan Nam ◽  
Jongwoo Kim ◽  
Nam Hoon Kim ◽  
Gun-Soo Park ◽  
...  

Abstract In this study, a three-stage bioaerosol sampler with a sampling flow rate of 170 L/min was designed and fabricated for sampling the bioaerosols released during human breathing and coughing, and its performance was evaluated. The sampler was constructed using a cyclone separator with a cutoff size of 2.5 µm as a preseparator, a multi-nozzle virtual impactor with a cutoff size of 0.34 µm as an aerosol concentrator, and a BioSampler, which is a commercial product, for collecting bioaerosols in a collection fluid. The collection efficiency of the sampler was evaluated through simulations and experiments. Only particles with sizes of 0.1-4 µm were selectively collected in the collection fluid. Bacteriophage bioaerosols were sampled using the developed sampler and ACD-200 Bobcat sampler, which is a commercial product. The amounts of collected bacteriophages were compared using the polymerase chain reaction (PCR) technique. The sampling performance of the developed sampler was similar to that of the ACD-200 Bobcat sampler. Moreover, the developed sampler showed its ability to sample bioaerosols of a specific size-range and collect them directly in a collection fluid for the PCR analysis. Therefore, the developed sampler is expected to be useful for indoor environmental monitoring by effectively sampling the bioaerosols released indoors during human breathing and coughing.


Micromachines ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 107
Author(s):  
Jianfei Chen ◽  
Wei Xie ◽  
Min Dai ◽  
Guorong Shen ◽  
Guoneng Li ◽  
...  

In order to utilize waste heat from passenger vehicles by a thermoelectric generator (TEG), a lab-scale TEG with a sufficient low-pressure drop was designed and tested. The waste heat from a 2.0 L petrol engine was simulated by using an air-circulation channel with an adjustable electric heater and a speed control motor. The TEG consisted of an integrated molding designed aluminum-finned heat collector, twenty thermoelectric modules, and a set of water-cooled heat sinks. Experiments were conducted in terms of power load feature, pressure drop, heat collection efficiency, thermoelectric efficiency and overall efficiency. It was found that the hot-end temperature was much lower (46.9%) than the flue gas temperature because the trade-off between fin area and pressure drop had to be considered. The obtained maximum electric power was 36.4 W, and the corresponding pressure drop was 36 Pa. The corresponding heat collection efficiency was 46.5%, and the thermoelectric efficiency was 2.88%, which agreed well with the theoretical prediction of 3.38%. As a result, an overall efficiency of 1.21% was reached. The present work firstly demonstrated a waste-heat-recovering TEG prototype with a balanced overall efficiency of over 1%, and a pressure drop of less than 50 Pa. On the other hand, the maximum electric power was difficult to fully extract. The charging power to a battery with a maximum power point tracking direct current–direct current converter was experimentally verified to work at a much higher conversion efficiency (15.3% higher) than regular converters.


Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 448
Author(s):  
Zhengguang Liu ◽  
Gaoyang Hou ◽  
Ying Song ◽  
Hessam Taherian ◽  
Shuaiwei Qi

Geothermal power plants have become the main application that utilizes geothermal energy. The utilization of deep geothermal energy adheres great importance to the soil condition. One of the biggest challenges faced by geothermal power plant designers is to reduce the risk of soil exploration. To solve this problem, forecasting by modeling has proven to be an important tool to address the problem. In this research, a geo-model was established by modeling three geological layers with different hydraulic and thermal properties to solve the above dilemma. The layers, elevation, and fault zones were simulated using interpolation functions from an artificial dataset. The coupled porous media flow and heat transfer problem using Darcy’s law, as well as heat transfer in porous media interfaces, were studied. The evolution of the flow field, hydrothermal performance, and temperature gradient were also analyzed for a period of 10 years. The results showed the recoverable thermal energy area gradually moved downwards during the 10-year simulation time. When the distance between the recharge well and the production well exceeded 200 m, the collection efficiency was significantly decreased. After 5 years of extraction, the power generation efficiency of the heat source will be less than 9.75%. These results effectively avoided the exploration cost of geothermal power plant site selection, which is significant for the efficiency improvement of geothermal energy.


Materials ◽  
2022 ◽  
Vol 15 (1) ◽  
pp. 388
Author(s):  
Mauricio R. Ramos ◽  
Andreo Crnjac ◽  
Donny Cosic ◽  
Milko Jakšić

Synthetic single crystal diamond grown using the chemical vapor deposition technique constitutes an extraordinary candidate material for monitoring radiation in extreme environments. However, under certain conditions, a progressive creation of space charge regions within the crystal can lead to the deterioration of charge collection efficiency. This phenomenon is called polarization and represents one of the major drawbacks associated with using this type of device. In this study, we explore different techniques to mitigate the degradation of signal due to polarization. For this purpose, two different diamond detectors are characterized by the ion beam-induced charge technique using a nuclear microprobe, which utilizes MeV energy ions of different penetration depths to probe charge transport in the detectors. The effect of polarization is analyzed by turning off the bias applied to the detector during continuous or discontinuous irradiation, and also by alternating bias polarity. In addition, the beneficial influence of temperature for reducing the effect of polarization is also observed. Finally, the effect of illuminating the detector with light is also measured. Our experimental results indicate that heating a detector or turning off the bias, and then applying it during continuous irradiation can be used as satisfactory methods for recovering the CCE value close to that of a prepolarized state. In damaged regions, illumination with white light can be used as a standard method to suppress the strength of polarization induced by holes.


2022 ◽  
Vol 17 (01) ◽  
pp. C01034
Author(s):  
N. Gallice

Abstract The Deep Underground Neutrino Experiment (DUNE) will be the next generation long-baseline neutrino experiment. The far detector is designed as a complex of four LAr-TPC (Liquid Argon Time Projection Chamber) modules with 17 kt of liquid argon each. The development and validation of the first far detector technology is pursued through ProtoDUNE Single Phase (ProtoDUNE-SP), a 770 t LAr-TPC at CERN Neutrino Platform. Crucial in DUNE is the photon detection system that will ensure the trigger of non-beam events — proton decay, supernova neutrino burst and BSM searches — and will improve the timing and calorimetry for neutrino beam events. Doping liquid argon with xenon is a known technique to shift the light emitted by argon (128 nm) to a longer wavelength (178 nm) to ease its detection. The largest xenon doping test ever performed in a LAr-TPC was carried out in ProtoDUNE-SP. From February to May 2020, a gradually increasing amount of xenon was injected to also compensate for the light loss due to air contamination. The response of such a large TPC has been studied using the ProtoDUNE-SP Photon Detection System (PDS) and a dedicated setup installed before the run. With the first it was possible to study the light collection efficiency with respect to the track position, while with the second it was possible to distinguish the xenon light (178 nm) from the LAr light (128 nm). The light shifting mechanism proved to be highly efficient even at small xenon concentrations (<20 ppm in mass) furthermore it allowed recovering the light quenched by pollutants. The light collection improved far from the detection plane, enhancing the photon detector response uniformity along the drift direction and confirming a longer Rayleigh scattering length for 178 nm photons, with respect to 128 nm ones. The charge collection by the TPC was monitored proving that xenon up to 20 ppm does not impact its performance.


2022 ◽  
Author(s):  
Greg Gillen ◽  
Jeffrey Lawrence ◽  
Edward Sisco ◽  
Matthew Edward Staymates ◽  
Jennifer R. Verkouteren ◽  
...  

Improvement of the particle collection efficiency of sampling wipes is desirable for optimizing the performance of many wipe-based chemical analysis techniques used for trace chemical screening applications. In this note,...


Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 264
Author(s):  
Antonella Sciuto ◽  
Lucia Calcagno ◽  
Salvatore Di Franco ◽  
Domenico Pellegrino ◽  
Lorenzo Maurizio Selgi ◽  
...  

4H-SiC based p-n junction UV photo-detectors were irradiated with 600 keV He+ in the fluence range of 5 × 1011 ÷ 5 × 1014 ion/cm2 in order to investigate their radiation hardness. The effects of irradiation on the electro-optical performance were monitored in dark condition and in the UV (200 ÷ 400 nm) range, as well as in the visible region confirming the typical visible blindness of unirradiated and irradiated SiC photo-sensors. A decrease of UV optical responsivity occurred after irradiation and two fluence regimes were identified. At low fluence (<1013 ions/cm2), a considerable reduction of optical responsivity (of about 50%) was measured despite the absence of relevant dark current changes. The presence of irradiation induced point defects and then the reduction of photo-generated charge lifetime are responsible for a reduction of the charge collection efficiency and then of the relevant optical response reduction: point defects act as recombination centers for the photo-generated charges, which recombine during the drift/diffusion toward the electrodes. At higher irradiation fluence, the optical responsivity is strongly reduced due to the formation of complex defects. The threshold between low and high fluence is about 100 kGy, confirming the radiation hardness of SiC photo-sensors.


Sign in / Sign up

Export Citation Format

Share Document