single particles
Recently Published Documents


TOTAL DOCUMENTS

725
(FIVE YEARS 147)

H-INDEX

59
(FIVE YEARS 8)

Small Methods ◽  
2022 ◽  
pp. 2101364
Author(s):  
Denis Selnihhin ◽  
Kim I. Mortensen ◽  
Jannik B. Larsen ◽  
Jens B. Simonsen ◽  
Finn Skou Pedersen

2022 ◽  
Vol 111 ◽  
pp. 185-196
Author(s):  
Qianni Zhou ◽  
Chunlei Cheng ◽  
Suxia Yang ◽  
Minghao Yuan ◽  
Jingjing Meng ◽  
...  

2021 ◽  
Author(s):  
Tzu-Hsien Shen ◽  
Liam Spillane ◽  
Jiayu Peng ◽  
Yang Shao-Horn ◽  
Vasiliki Tileli

AbstractThe surface wettability of catalysts is typically controlled via surface treatments that promote catalytic performance. Here we report on potential-regulated hydrophobicity/hydrophilicity at cobalt-based oxide interfaces with an alkaline solution. The switchable wetting of single particles, directly related to their activity and stability towards the oxygen evolution reaction, was revealed by electrochemical liquid-phase transmission electron microscopy. Analysis of the movement of the liquid in real time revealed distinctive wettability behaviour associated with specific potential ranges. At low potentials, an overall reduction of the hydrophobicity of the oxides was probed. Upon reversible reconstruction towards the surface oxyhydroxide phase, electrowetting was found to cause a change in the interfacial capacitance. At high potentials, the evolution of molecular oxygen, confirmed by operando electron energy-loss spectroscopy, was accompanied by a globally thinner liquid layer. This work directly links the physical wetting with the chemical oxygen evolution reaction of single particles, providing fundamental insights into solid–liquid interfacial interactions of oxygen-evolving oxides.


2021 ◽  
Vol 12 (2-2021) ◽  
pp. 282-284
Author(s):  
A. D. Shirokikh ◽  
◽  
M. Y. Koroleva ◽  
E. V. Yurtov ◽  
◽  
...  

In this work, we studied the effect of yttrium stearate on the physicochemical properties of dispersions of solid lipid nanoparticles composed of stearic acid stabilized with nonionic surfactants (Tween 60, Span 60). The results showed that an increase in the concentration of yttrium stearate leads to increasing kinetic stability and decreasing the average size of the aggregates. Along with this, the average size of single particles remains practically unchanged and amounts to 35±5 nm.


2021 ◽  
Vol 21 (23) ◽  
pp. 17953-17967
Author(s):  
Qi En Zhong ◽  
Chunlei Cheng ◽  
Zaihua Wang ◽  
Lei Li ◽  
Mei Li ◽  
...  

Abstract. The mixing states of particulate amines with different chemical components are of great significance in studying the formation and evolution processes of amine-containing particles. In this work, the mixing states of single particles containing trimethylamine (TMA) and diethylamine (DEA) are investigated using a high-performance single-particle aerosol mass spectrometer located in Nanjing, China, in September 2019. TMA- and DEA-containing particles accounted for 22.8 % and 5.5 % of the total detected single particles, respectively. The particle count and abundance of the TMA-containing particles in the total particles notably increased with enhancement of ambient relative humidity (RH), while the DEA-containing particles showed no increase under a high RH. This result suggested the important role of RH in the formation of particulate TMA. Significant enrichments of secondary organic species, including 43C2H3O+, 26CN−, 42CNO−, 73C3H5O2-, and 89HC2O4-, were found in DEA-containing particles, indicating that DEA-containing particles were closely associated with the aging of secondary organics. The differential mass spectra of the DEA-containing particles showed a much higher abundance of nitrate and organic nitrogen species during the nighttime than during the daytime, which suggested that the nighttime production of particulate DEA might be associated with reactions of gaseous DEA with HNO3 and/or particulate nitrate. In the daytime, the decrease in DEA-containing particles was observed with the enrichment of oxalate and glyoxylate, which suggested a substantial impact of photochemistry on the aging process of DEA-containing particles. Furthermore, more than 80 % of TMA- and DEA-containing particles internally mixed with nitrate, while the abundance of sulfate was higher in the DEA-containing particles (79.3 %) than in the TMA-containing particles (55.3 %). This suggested that particulate DEA existed both as nitrate and sulfate aminium salts, while the particulate TMA primarily presented as nitrate aminium salt. The different mixing states of the TMA- and DEA-containing particles suggested their different formation processes and various influencing factors, which are difficult to investigate using bulk analysis. These results provide insights into the discriminated fates of organics during the evolution process in aerosols, which helps to illustrate the behavior of secondary organic aerosols.


Author(s):  
Jiarui Zhang ◽  
Oliver T. Stein ◽  
Tien D. Luu ◽  
Ali Shamooni ◽  
Zhixun Xia ◽  
...  

2021 ◽  
Author(s):  
Roman Castaneda ◽  
Pablo Bedoya ◽  
Giorgio Matteucci

Abstract In spite of its accurate prediction of the experimental outcomes of double-hole single particle interference, quantum mechanics does not provide a phenomenological description of the individual realizations of the experiment. By defining a non-locality function and considering the non-paraxial solution of the time-independent Schrödinger equation by the Green’s theorem, we introduce a geometrical potential which leads to an outstanding result. The geometric potential allows the description of spatially structured Lorentzian wells in the volume between the double-hole mask and the detector. The buildup of the interference patterns results from the confined propagation of single particles through these Lorentzian wells. The phenomenological implications of this description are discussed and illustrated by numerical examples, and its compatibility with quantum mechanical predictions is also shown. A further, non-trivial advantage of this model over the conventional formalism, is that the present quantum probability density can be exactly calculated both in the near and far field conditions.


Author(s):  
Juan Manuel Hernández Meza ◽  
Juan Rodrigo Velez Cordero ◽  
Maria de los Ángeles Ramirez Saito ◽  
Said Aranda Espinoza ◽  
Jose Luis Arauz-Lara ◽  
...  

Abstract We report a experimental study of the motion of 1μm single particles interacting with functionalized walls at low and moderate ionic strengths conditions. The 3D particle’s trajectories were obtained by analyzing the diffracted particle images (point spread function). The studied particle/wall systems include negatively charged particles interacting with bare glass, glass covered with polyelectrolytes and glass covered with a lipid monolayer. In the low salt regime (pure water) we observed a retardation effect of the short-time diffusion coefficients when the particle interacts with a negatively charged wall; this effect is more severe in the perpendicular than in the lateral component. The decrease of the diffusion as a function of the particle-wall distance h was similar regardless the origin of the negative charge at the wall. When surface charge was screened or salt was added to the medium (10mM), the diffusivity curves recover the classical hydrodynamic behavior. Electroviscous theory based on the thin electrical double layer (EDL) approximation reproduces the experimental data except for small h. On the other hand, 2D numerical solutions of the electrokinetic equations showed good qualitative agreement with experiments. The numerical model also showed that the hydrodynamic and Maxwellian part of the electroviscous total drag tend to zero as h → 0 and how this is linked with the merging of both EDL’s at close proximity.


Sign in / Sign up

Export Citation Format

Share Document