scholarly journals Supplementary material to "Carbon stocks and fluxes in the high latitudes: Using site-level data to evaluate Earth system models"

Author(s):  
Sarah Chadburn ◽  
Gerhard Krinner ◽  
Philipp Porada ◽  
Annett Bartsch ◽  
Christian Beer ◽  
...  
2017 ◽  
Vol 14 (22) ◽  
pp. 5143-5169 ◽  
Author(s):  
Sarah E. Chadburn ◽  
Gerhard Krinner ◽  
Philipp Porada ◽  
Annett Bartsch ◽  
Christian Beer ◽  
...  

Abstract. It is important that climate models can accurately simulate the terrestrial carbon cycle in the Arctic due to the large and potentially labile carbon stocks found in permafrost-affected environments, which can lead to a positive climate feedback, along with the possibility of future carbon sinks from northward expansion of vegetation under climate warming. Here we evaluate the simulation of tundra carbon stocks and fluxes in three land surface schemes that each form part of major Earth system models (JSBACH, Germany; JULES, UK; ORCHIDEE, France). We use a site-level approach in which comprehensive, high-frequency datasets allow us to disentangle the importance of different processes. The models have improved physical permafrost processes and there is a reasonable correspondence between the simulated and measured physical variables, including soil temperature, soil moisture and snow. We show that if the models simulate the correct leaf area index (LAI), the standard C3 photosynthesis schemes produce the correct order of magnitude of carbon fluxes. Therefore, simulating the correct LAI is one of the first priorities. LAI depends quite strongly on climatic variables alone, as we see by the fact that the dynamic vegetation model can simulate most of the differences in LAI between sites, based almost entirely on climate inputs. However, we also identify an influence from nutrient limitation as the LAI becomes too large at some of the more nutrient-limited sites. We conclude that including moss as well as vascular plants is of primary importance to the carbon budget, as moss contributes a large fraction to the seasonal CO2 flux in nutrient-limited conditions. Moss photosynthetic activity can be strongly influenced by the moisture content of moss, and the carbon uptake can be significantly different from vascular plants with a similar LAI. The soil carbon stocks depend strongly on the rate of input of carbon from the vegetation to the soil, and our analysis suggests that an improved simulation of photosynthesis would also lead to an improved simulation of soil carbon stocks. However, the stocks are also influenced by soil carbon burial (e.g. through cryoturbation) and the rate of heterotrophic respiration, which depends on the soil physical state. More detailed below-ground measurements are needed to fully evaluate biological and physical soil processes. Furthermore, even if these processes are well modelled, the soil carbon profiles cannot resemble peat layers as peat accumulation processes are not represented in the models. Thus, we identify three priority areas for model development: (1) dynamic vegetation including (a) climate and (b) nutrient limitation effects; (2) adding moss as a plant functional type; and an (3) improved vertical profile of soil carbon including peat processes.


2012 ◽  
Vol 9 (10) ◽  
pp. 14437-14473 ◽  
Author(s):  
K. E. O. Todd-Brown ◽  
J. T. Randerson ◽  
W. M. Post ◽  
F. M. Hoffman ◽  
C. Tarnocai ◽  
...  

Abstract. Stocks of soil organic carbon represent a large component of the carbon cycle that may participate in climate change feedbacks, particularly on decadal and century scales. For Earth system models (ESMs), the ability to accurately represent the global distribution of existing soil carbon stocks is a prerequisite for predicting future carbon-climate feedbacks. We compared soil carbon predictions from 16 ESMs to empirical data from the Harmonized World Soil Database (HWSD) and Northern Circumpolar Soil Carbon Database (NCSCD). Model estimates of global soil carbon stocks ranged from 510 to 3050 Pg C, compared to an estimate of 890–1660 Pg C from the HWSD. Model predictions for the high latitudes fell between 60 and 800 Pg C, compared to 380–620 Pg C from the NCSCD and 290 Pg C from the HWSD. This 5.3-fold variation in global soil carbon across models compared to a 3.4-fold variation in net primary productivity (NPP) and a 3.8-fold variation in global soil carbon turnover times. The spatial distribution of soil carbon predicted by the ESMs was not well correlated with the HWSD (Pearson's correlations < 0.4, RMSE 9.4 to 22.8 kg C m−2), although model-data agreement generally improved at the biome scale. There was poor agreement between the HWSD and NCSCD datasets in northern latitudes (Pearson's correlation = 0.33), indicating uncertainty in empirical estimates of soil carbon. We found that a reduced complexity model dependent on NPP and soil temperature explained most of the spatial variation in soil carbon predicted by most ESMs (R2 values between 0.73 and 0.93). This result suggests that differences in soil carbon predictions between ESMs are driven primarily by differences in predicted NPP and the parameterization of soil carbon responses to NPP and temperature not by structural differences between the models. Future work should focus on accurately representing these driving variables and modifying model structure to include additional processes.


Author(s):  
Gillian Thornhill ◽  
William Collins ◽  
Dirk Olivié ◽  
Alex Archibald ◽  
Susanne Bauer ◽  
...  

2017 ◽  
Author(s):  
Sarah Chadburn ◽  
Gerhard Krinner ◽  
Philipp Porada ◽  
Annett Bartsch ◽  
Christian Beer ◽  
...  

Abstract. It is important that climate models can accurately simulate the terrestrial carbon cycle in the Arctic, due to the large and potentially labile carbon stocks found in permafrost-affected environments, which can lead to a positive climate feedback, along with the possibility of future carbon sinks from northward expansion of vegetation under climate warming. Here we evaluate the simulation of tundra carbon stocks and fluxes in three land surface schemes that each form part of major Earth System Models (JSBACH, Germany; JULES, UK and ORCHIDEE, France). We use a site-level approach where comprehensive, high-frequency datasets allow us to disentangle the importance of different processes. The models have improved physical permafrost processes and there is a reasonable correspondence between the simulated and measured physical variables, including soil temperature, soil moisture and snow. We show that if the models simulate the correct leaf area index (LAI), the standard C3 photosynthesis schemes produce the correct order of magnitude of carbon fluxes. Therefore, simulating the correct LAI is one of the first priorities. LAI depends quite strongly on climatic variables alone, as we see by the fact that the dynamic vegetation model can simulate most of the differences in LAI between sites, based almost entirely on climate inputs. However, we also identify an influence from nutrient limitation as the LAI becomes too large at some of the more nutrient-limited sites. We conclude that including moss as well as vascular plants is of primary importance to the carbon budget, as moss contributes a large fraction to the seasonal CO2 flux in nutrient-limited conditions. Moss photosynthetic activity can be strongly influenced by the moisture content of moss, and the carbon uptake can be significantly different from vascular plants with similar LAI. The soil carbon stocks depend strongly on the rate of input of carbon from the vegetation to the soil, and our analysis suggests that an improved simulation of photosynthesis would also lead to an improved simulation of soil carbon stocks. However, the stocks are also influenced by soil carbon burial (e.g. through cryoturbation) and the rate of heterotrophic respiration, which depends on the soil physical state. More detailed below-ground measurements are needed to fully evaluate soil biological and physical processes. Furthermore, even if these processes are well modelled, the soil carbon profiles cannot resemble peat layers as peat accumulation processes are not represented in the models. Thus we identify three priority areas for model development: 1. Dynamic vegetation including a. climate and b. nutrient limitation effects. 2. Adding moss as a plant functional type. 3. Improved vertical profile of soil carbon including peat processes.


2020 ◽  
Author(s):  
Claude-Michel Nzotungicimpaye ◽  
Andrew H. MacDougall ◽  
Joe R. Melton ◽  
Claire C. Treat ◽  
Michael Eby ◽  
...  

2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Alexander J. Winkler ◽  
Ranga B. Myneni ◽  
Georgii A. Alexandrov ◽  
Victor Brovkin

Sign in / Sign up

Export Citation Format

Share Document