global soil
Recently Published Documents


TOTAL DOCUMENTS

383
(FIVE YEARS 156)

H-INDEX

51
(FIVE YEARS 9)

2022 ◽  
Author(s):  
Huaihai Chen ◽  
Kayan Ma ◽  
Yu Huang ◽  
Jiajiang Lin ◽  
Christopher Schadt ◽  
...  

Abstract. Understanding the relationship between soil microbial taxonomic compositions and functional profiles is essential for predicting ecosystem functions under various environmental disturbances. However, even though microbial communities are sensitive to disturbance, ecosystem functions remain relatively stable, as soil microbes are likely to be functionally redundant. Microbial functional redundancy may be more associated with “broad” functions carried out by a wide range of microbes, than with “narrow” functions specialized by specific microorganisms. Thus, a comprehensive study to evaluate how microbial taxonomic compositions correlate with “broad” and “narrow” functional profiles is necessary. Here, we evaluated soil metagenomes worldwide to assess whether functional and taxonomic diversities differ significantly between the five “broad” and the five “narrow” functions that we chose. Our results revealed that compared with the five “broad” functions, soil microbes capable of performing the five “narrow” functions were more taxonomically diverse, and thus their functional diversity was more dependent on taxonomic diversity, implying lower levels of functional redundancy in “narrow” functions. Co-occurrence networks indicated that microorganisms conducting “broad” functions were positively related, but microbes specializing “narrow” functions were interacting mostly negatively. Our study provides strong evidence to support our hypothesis that functional redundancy is significantly different between “broad” and “narrow” functions in soil microbes, as the association of functional diversity with taxonomy were greater in the five “narrow” rather than the five “broad” functions.


GCB Bioenergy ◽  
2021 ◽  
Author(s):  
Mengjie Han ◽  
Qing Zhao ◽  
Wei Li ◽  
Philippe Ciais ◽  
Ying‐Ping Wang ◽  
...  

2021 ◽  
Author(s):  
Katherine Heckman ◽  
Caitlin E Hicks Pries ◽  
Corey R Lawrence ◽  
Craig Rasmussen ◽  
Susan E Crow ◽  
...  

2021 ◽  
Author(s):  
Leho Tedersoo ◽  
Vladimir Mikryukov ◽  
Sten Anslan ◽  
Mohammad Bahram ◽  
Abdul Nasir Khalid ◽  
...  

2021 ◽  
pp. 125-136
Author(s):  
Klaus Dodds ◽  
Jamie Woodward

‘The Arctic carbon vault’ describes the large share of Earth's organic carbon sequestered in the frozen ground and within the shelf sea sediments of the Arctic Ocean. The organic carbon stock of the permafrost is roughly equivalent to half of total global soil carbon. A cold Arctic with extensive permafrost is an effective long-term carbon sink as carbon is safely locked away as long as permafrost is maintained. Giant craters appeared on the Yamal peninsula. The thawing permafrost leads to the formation of thermokarst lakes, which are frozen bodies of water held in subsidence depressions created by the thawing of ground ice. Well-preserved carcasses of extinct ice age beasts, including woolly mammoths and cave bears, have been recovered from the thawing permafrost.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Qiyan Zhang ◽  
Liwen Wu ◽  
Hengfu Yin ◽  
Zilong Xu ◽  
Yunxiao Zhao ◽  
...  

AbstractFusarium oxysporum, a global soil-borne pathogen, causes severe disease in various cultivated plants. The mechanism underlying infection and resistance remains largely elusive. Vernicia fordii, known as the tung tree, suffers from disease caused by F. oxysporum f. sp. fordiis (Fof-1), while its sister species V. montana displays high resistance to Fof-1. To investigate the process of infection and resistance ability, we demonstrated that Fof-1 can penetrate the epidermis of root hairs and then centripetally invade the cortex and phloem in both species. Furthermore, Fof-1 spread upwards through the root xylem in susceptible V. fordii trees, whereas it failed to infect the root xylem in resistant V. montana trees. We found that D6 PROTEIN KINASE LIKE 2 (VmD6PKL2) was specifically expressed in the lateral root xylem and was induced after Fof-1 infection in resistant trees. Transgenic analysis in Arabidopsis and tomato revealed that VmD6PKL2 significantly enhanced resistance in both species, whereas the d6pkl2 mutant displayed reduced resistance against Fof-1. Additionally, VmD6PKL2 was identified to interact directly with synaptotagmin (VmSYT3), which is specifically expressed in the root xylem and mediates the negative regulation responding to Fof-1. Our data suggested that VmD6PKL2 could act as a resistance gene against Fof-1 through suppression of VmSYT3-mediated negative regulation in the lateral root xylem of the resistant species. These findings provide novel insight into Fusarium wilt resistance in plants.


2021 ◽  
Vol 9 ◽  
Author(s):  
Liang Qiao ◽  
Zhiyan Zuo ◽  
Dong Xiao ◽  
Lulei Bu

Soil moisture variations and its relevant feedbacks (e.g., soil moisture–temperature and soil moisture–precipitation) have a crucial impact on the climate system. This study uses reanalysis and Coupled Model Intercomparison Project phase 6 simulations datasets to detect, attribute, and project soil moisture variations. The effect of anthropogenic forcings [greenhouse gases (GHG), anthropogenic aerosols (AA), and land use (LU) change] on soil moisture is much larger than that of the natural forcing. Soil moisture shows a drying trend at a global scale, which is mainly attributed to GHG forcing. The effects of external forcings vary with the regions significantly. Over eastern South America, GHG, AA, and natural forcings make soil dry, while LU forcing makes the soil wet. Over severely drying Europe, all the external forcings including GHG, AA, LU, and natural forcing exhibit drying effect. The optimal fingerprint method detection results show that some of GHG, AA, LU, and natural signals can be detected in soil moisture variations in some regions such as Europe. The soil will keep drying in all scenarios over most parts of the globe except Sahel and parts of mid-latitudes of Asia. With the increase of anthropogenic emissions, the variation of global soil moisture will be more extreme, especially in hotspots where the land–atmosphere coupling is intensive. The drying trend of soil moisture will be much larger on the surface than in middle and deep layers in the future, and this phenomenon will be more severe under the high-emission scenario. It may be affected by increased evaporation and the effect of carbon dioxide fertilization caused by global warming.


Sign in / Sign up

Export Citation Format

Share Document