scholarly journals Fire intensity impacts on post-fire temperate coniferous forest net primary productivity

2017 ◽  
Author(s):  
Aaron M. Sparks ◽  
Crystal A. Kolden ◽  
Alistair M. S. Smith ◽  
Luigi Boschetti ◽  
Daniel M. Johnson ◽  
...  

Abstract. Fire is a dynamic ecological process in forests and impacts the carbon (C) cycle through direct combustion emissions, tree mortality, and by impairing the ability of surviving trees to sequester carbon. While studies on young trees have demonstrated that fire intensity is a determinant of post-fire net primary productivity, wildland fires at landscape to regional scales have largely been assumed to either cause tree mortality, or conversely, cause no physiological impact, ignoring the impacted but surviving trees. Our objective was to understand how fire intensity affects post-fire net primary productivity in conifer-dominated forested ecosystems at the spatial scale of large wildland fires. We examined the relationships between fire radiative power (FRP), its temporal integral (fire radiative energy – FRE), and net primary productivity (NPP) using 16 years of data from the MOderate Resolution Imaging Spectrometer (MODIS) for 15 large fires in western United States coniferous forests. The greatest NPP post-fire loss occurred one year post-fire and ranged from −67 to −312 g C m−2 yr−1 (−13 to −54%) across all fires. Forests dominated by fire-resistant species (species that typically survive low intensity fires) experienced the lowest relative NPP reductions compared to forests with less resistant species. Post-fire NPP in forests that were dominated by fire-susceptible species were not as sensitive to FRP or FRE, indicating that NPP in these forests may be reduced to similar levels regardless of fire intensity. Conversely, post-fire NPP in forests dominated by fire resistant and mixed species decreased with increasing FRP or FRE. In some cases, this dose-response relationship persisted for more than a decade post-fire, highlighting a legacy effect of fire intensity on post-fire C dynamics in these forests.

2018 ◽  
Vol 15 (4) ◽  
pp. 1173-1183 ◽  
Author(s):  
Aaron M. Sparks ◽  
Crystal A. Kolden ◽  
Alistair M. S. Smith ◽  
Luigi Boschetti ◽  
Daniel M. Johnson ◽  
...  

Abstract. Fire is a dynamic ecological process in forests and impacts the carbon (C) cycle through direct combustion emissions, tree mortality, and by impairing the ability of surviving trees to sequester carbon. While studies on young trees have demonstrated that fire intensity is a determinant of post-fire net primary productivity, wildland fires on landscape to regional scales have largely been assumed to either cause tree mortality, or conversely, cause no physiological impact, ignoring the impacted but surviving trees. Our objective was to understand how fire intensity affects post-fire net primary productivity in conifer-dominated forested ecosystems on the spatial scale of large wildland fires. We examined the relationships between fire radiative power (FRP), its temporal integral (fire radiative energy – FRE), and net primary productivity (NPP) using 16 years of data from the MOderate Resolution Imaging Spectrometer (MODIS) for 15 large fires in western United States coniferous forests. The greatest NPP post-fire loss occurred 1 year post-fire and ranged from −67 to −312 g C m−2 yr−1 (−13 to −54 %) across all fires. Forests dominated by fire-resistant species (species that typically survive low-intensity fires) experienced the lowest relative NPP reductions compared to forests with less resistant species. Post-fire NPP in forests that were dominated by fire-susceptible species were not as sensitive to FRP or FRE, indicating that NPP in these forests may be reduced to similar levels regardless of fire intensity. Conversely, post-fire NPP in forests dominated by fire-resistant and mixed species decreased with increasing FRP or FRE. In some cases, this dose–response relationship persisted for more than a decade post-fire, highlighting a legacy effect of fire intensity on post-fire C dynamics in these forests.


2017 ◽  
Author(s):  
Aaron M. Sparks ◽  
Crystal A. Kolden ◽  
Alistair M. S. Smith ◽  
Luigi Boschetti ◽  
Daniel M. Johnson ◽  
...  

2021 ◽  
Vol 14 (4) ◽  
pp. 2161-2186
Author(s):  
Andrew J. Wiltshire ◽  
Eleanor J. Burke ◽  
Sarah E. Chadburn ◽  
Chris D. Jones ◽  
Peter M. Cox ◽  
...  

Abstract. Understanding future changes in the terrestrial carbon cycle is important for reliable projections of climate change and impacts on ecosystems. It is well known that nitrogen (N) could limit plants' response to increased atmospheric carbon dioxide and it is therefore important to include a representation of the N cycle in Earth system models. Here we present the implementation of the terrestrial nitrogen cycle in the Joint UK Land Environment Simulator (JULES) – the land surface scheme of the UK Earth System Model (UKESM). Two configurations are discussed – the first one (JULES-CN) has a bulk soil biogeochemical model and the second one is a development configuration that resolves the soil biogeochemistry with depth (JULES-CNlayer). In JULES the nitrogen (N) cycle is based on the existing carbon (C) cycle and represents all the key terrestrial N processes in a parsimonious way. Biological N fixation is dependent on net primary productivity, and N deposition is specified as an external input. Nitrogen leaves the vegetation and soil system via leaching and a bulk gas loss term. Nutrient limitation reduces carbon-use efficiency (CUE – ratio of net to gross primary productivity) and can slow soil decomposition. We show that ecosystem level N limitation of net primary productivity (quantified in the model by the ratio of the potential amount of C that can be allocated to growth and spreading of the vegetation compared with the actual amount achieved in its natural state) falls at the lower end of the observational estimates in forests (approximately 1.0 in the model compared with 1.01 to 1.38 in the observations). The model shows more N limitation in the tropical savanna and tundra biomes, consistent with the available observations. Simulated C and N pools and fluxes are comparable to the limited available observations and model-derived estimates. The introduction of an N cycle improves the representation of interannual variability of global net ecosystem exchange, which was more pronounced in the C-cycle-only versions of JULES (JULES-C) than shown in estimates from the Global Carbon Project. It also reduces the present-day CUE from a global mean value of 0.45 for JULES-C to 0.41 for JULES-CN and 0.40 for JULES-CNlayer, all of which fall within the observational range. The N cycle also alters the response of the C fluxes over the 20th century and limits the CO2 fertilisation effect, such that the simulated current-day land C sink is reduced by about 0.5 Pg C yr−1 compared to the version with no N limitation. JULES-CNlayer additionally improves the representation of soil biogeochemistry, including turnover times in the northern high latitudes. The inclusion of a prognostic land N scheme marks a step forward in functionality and realism for the JULES and UKESM models.


2009 ◽  
Author(s):  
Wei Huang ◽  
A-Na Cao ◽  
LiangPei Zhang ◽  
Xianhua Li ◽  
Kanako Muramatu

2021 ◽  
Vol 932 (1) ◽  
pp. 012009
Author(s):  
Jan-Peter George ◽  
Mathias Neumann ◽  
Jürgen Vogt ◽  
Carmelo Cammalleri ◽  
Mait Lang

Abstract Forests are currently experiencing an unprecedented period of progressively drier growing conditions around the globe, which is threatening many forest ecosystem functions. Trees as long-living organisms are able to withstand drought periods. Our understanding on critical drought severity resulting in substantial decline in net primary productivity and/or eventually tree mortality is underdeveloped. A wide range of remote sensing products and ground observations, including information on productivity, tree vitality, climate, and soil moisture with high temporal and spatial resolution are now available. Linking these data sources could improve our understanding of the complex relationship between forest growth and drought. We introduce here a conceptual framework using satellite remotely sensed net primary productivity (MOD17A3 and MODIS EURO), ground observations of tree mortality (ICP level I survey data), soil moisture anomaly (Copernicus European Drought Observatory), and spatially-downscaled daily climate data for entire Europe. This unique analysis will enable us to test the influence of biotic and abiotic covariates such as tree age, stand history, and drought legacy using historic droughts for model development. This conceptual framework, as evident from the preliminary results shown here, can help anticipating the effects of future droughts and optimize global climate models considering drought effects.


2013 ◽  
Vol 59 (3) ◽  
Author(s):  
Jozef Pajtík ◽  
Bohdan Konôpka ◽  
Róbert Marušák

AbstractOne of the expected consequences of climate change and its inherent phenomena to forest ecosystems is the gradual modification of their tree species composition (i.e. expansion of resistant species instead of less resistant ones). Climate change accompanied with increasing temperatures and a lack of precipitations may present a threat especially to spruce stands in the European part of the temperate zone. European beech is one of the possible forest tree species which might replace the potentially endangered spruce. In this paper, we observed, by using a combination of continual measurements and destructive whole-tree sampling, standing stocks of above-ground biomass (i.e. stem, branches, and foliage) and its annual net primary productivity (NPP) in naturally regenerated young stands of beech and spruce. We intentionally selected a site where the changing climate conditions are better suited to the ecological demands of beech rather than spruce (the species is dominant in the observed area). We recorded only small differences in the standing stock of stems of the beech, if based on tons per ha. However, this is in favor of spruce if based on cubic meters per ha. The largest difference between the species was found for the standing stock of foliage, spruce retained three times the biomass of beech. Also, beech allocated more carbohydrates to stem than spruce. On the other hand, we estimated nearly the same production of foliages and branches in both stands.


2017 ◽  
Vol 71 (3) ◽  
pp. 187-201 ◽  
Author(s):  
W Yang ◽  
T Lu ◽  
S Liu ◽  
J Jian ◽  
F Shi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document