n cycle
Recently Published Documents


TOTAL DOCUMENTS

200
(FIVE YEARS 60)

H-INDEX

29
(FIVE YEARS 3)

2022 ◽  
Vol 808 ◽  
pp. 152140
Author(s):  
Kerou Zhang ◽  
Mingxu Li ◽  
Zhongqing Yan ◽  
Meng Li ◽  
Enze Kang ◽  
...  

2022 ◽  
Author(s):  
Paul M Berube ◽  
Tyler J O'Keefe ◽  
Anna N Rasmussen ◽  
Sallie W Chisholm

Prochlorococcus is an abundant photosynthetic bacterium in the oligotrophic open ocean where nitrogen (N) often limits the growth of phytoplankton. Prochlorococcus has evolved into multiple phylogenetic clades of high-light (HL) adapted and low-light (LL) adapted cells. Within these clades, cells encode a variety of N assimilation traits that are differentially distributed among members of the population. Among these traits, nitrate (NO3-) assimilation is generally restricted to a few clades of high-light adapted cells (the HLI, HLII, and HLVI clades) and a single clade of low-light adapted cells (the LLI clade). Most, if not all, cells belonging to the LLI clade have the ability to assimilate nitrite (NO2-), with a subset of this clade capable of assimilating both NO3- and NO2-. Cells belonging to the LLI clade are maximally abundant at the top of the nitracline and near the primary NO2- maximum layer. In some ecosystems, this peak in NO2- concentration may be a consequence of incomplete assimilatory NO3- reduction by phytoplankton. This phenomenon is characterized by a bottleneck in the downstream half of the NO3- assimilation pathway and the concomitant accumulation and release of NO2- by phytoplankton cells. Given the association between LLI Prochlorococcus and the primary NO2- maximum layer, we hypothesized that some Prochlorococcus exhibit incomplete assimilatory NO3- reduction. To assess this, we monitored NO2- accumulation in batch culture for 3 Prochlorococcus strains (MIT0915, MIT0917, and SB) and 2 Synechococcus strains (WH8102 and WH7803) when grown on NO3- as the sole N source. Only MIT0917 and SB accumulated external NO2- during growth on NO3-. Approximately 20-30% of the NO3- transported into the cell by MIT0917 was released as NO2-, with the balance assimilated into biomass. We further observed that co-cultures using NO3- as the sole N source could be established for MIT0917 and a Prochlorococcus strain that can assimilate NO2- but not NO3-. In these co-cultures, the NO2- released by MIT0917 was efficiently consumed by its partner strain during balanced exponential growth. Our findings highlight the potential for emergent metabolic partnerships within Prochlorococcus populations that are mediated by the production and consumption of the N cycle intermediate, NO2-.


2021 ◽  
Vol 13 (21) ◽  
pp. 11967
Author(s):  
Meng Wang ◽  
Ling Wang ◽  
Qian Li ◽  
Hang Liu ◽  
Yuan Lin ◽  
...  

The soil nitrogen (N) cycle is an essential role of the biogeochemical cycle. Bacteria play an irreplaceable part in the soil N cycle, but the impact of different N gradients on bacterial communities remains unclear. The purpose of this research was to explore the bacterial abundance, community composition, and diversity under different N application rates in a water-limited area. We investigated the bacterial abundance, diversity, community composition, and structure under five different N gradients (0, 90, 150, 210, and 270 kg ha−1) using real-time quantitative PCR and high-throughput sequencing, and then explored bacterial functional groups with FAPROTAX. N application significantly affected bacterial abundance and community composition. Bacterial diversity was enhanced at low N application rates and reduced at higher N application rates. Principal coordinate analysis showed that bacterial community structure was separated into two groups between low N application rates and high N application rates; these differences in bacterial community structure may be driven by available nitrogen (AN). The results of FAPROTAX revealed that N application promoted the functions of Aerobic_nitrite_oxidation, Nitrate_reduction, and Aerobic_ammonia_oxidation, but inhibited the Nitrogen_fixation function of the bacterial community. The high N network caused the reduction of network structure stability. Our results revealed that N fertilizer driven bacterial community structure and soil nutrients were the main influential factors in the variation of bacterial community structure. We suggest that the optimal N application rate in this study may be approximately 150 kg ha−1, based on the variations of soil properties and bacterial community structure in semi-arid areas.


Water ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 2749
Author(s):  
Jin-Jin Li ◽  
Fei Dong ◽  
Ai-Ping Huang ◽  
Qiu-Yue Lian ◽  
Wen-Qi Peng

The Danjiangkou Reservoir in China is characterized by significantly high concentrations of total nitrogen (TN), and the sources are not clear. Recently, research on this reservoir has focused on the N cycle, the spatial and temporal distribution characteristics of N, and the factors influencing N concentration. Significant temporal and spatial differences in TN concentrations exist, both in the reservoir area and the tributaries. N concentration in the area is affected by numerous factors, including N transported by tributaries, nonpoint source pollution around the reservoir, internal N release, and atmospheric N deposition. Moreover, a dam heightening project led to a larger water-fluctuation zone and more bays in the reservoir, directly affecting its N cycle. However, further research is required to explore the N cycle on a large watershed scale in the Danjiangkou Reservoir and upper stream areas, determine N pollution sources using satellite remote sensing, and conduct simulations of a water body N cycle model based on data fusion. Although the issue of excessive TN has been alleviated to some extent by the South-North Water Diversion Project, the excessively high TN concentrations require more research to aid the implementation of N-reducing strategies.


Water ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2187
Author(s):  
Davide Marzi ◽  
Maria Luisa Antenozio ◽  
Sara Vernazzaro ◽  
Clara Sette ◽  
Enrico Veschetti ◽  
...  

The reuse of Pteris vittata plants for multiple phytofiltration cycles is a main issue to allow an efficient phytoremediation of arsenic (As)-contaminated groundwater. Here, we assessed the capacity of phytofiltration of P. vittata plants grown for two cycles on naturally As-contaminated drinking water (collected in Central Italy), spaced by a growth cycle on non-contaminated water (N cycle). P. vittata young plants, with extensive frond and root development, were suspended individually in 15 L of water with initial As of 59 µg/L, without any additional treatment or water refilling. During cycle 1, in 45 days P. vittata plants reduced As concentration below 10 µg/L, the allowed EU limits for drinking water. During the subsequent 30 day-N cycle on non-contaminated water, no leaching of As from the roots was observed, while the water pH increased 0.9 Units, but is within the allowed limits. During cycle 2, under the same conditions as cycle 1, As concentration decreased below 10 µg/L in less than seven days. These results show that P. vittata young plants, previously used for the phytofiltration of As, do not extrude As and, when reused, remove As much more rapidly. No additional treatments were required during phytofiltration and thus this represents a sustainable, efficient, and scalable strategy.


2021 ◽  
Vol 9 ◽  
Author(s):  
Paula Luiza Fraga-Ferreira ◽  
Magali Ader ◽  
Sérgio Caetano-Filho ◽  
Pierre Sansjofre ◽  
Gustavo Macedo Paula-Santos ◽  
...  

The Ediacaran-Cambrian transition is marked by the diversification of metazoans in the marine realm. However, this is not recorded by the Ediacaran-Cambrian Bambuí Group of the São Francisco basin, Brazil. Containing the sedimentary record of a partially confined foreland basin system, the Bambuí strata bear rare metazoan remnants and a major carbon isotope positive excursion decoupled from the global record. This has been explained by changes in the paleogeography of the basin, which became a restricted epicontinental sea in the core of the Gondwana supercontinent, promoting episodes of shallow water anoxia. Here, we report new δ15Nbulk data from the two lowermost second-order transgressive-regressive sequences of the Bambuí Group. The results show a rise of δ15N values from +2 to +5‰ in the transgressive system tract of the basal sequence, which was deposited when the basin was connected to other marginal seas. Such excursion is interpreted as an oxygenation event in the Bambuí sea. Above, in the regressive systems tract, δ15N values vary from +2 to +5‰, pointing to instabilities in the N-cyle that are concomitant with the onset of basin restrictions, higher sedimentary supply/accommodation ratios, and the episodic anoxia. In the transgressive systems tract, the δ15N values stabilise at ∼+3.5‰, pointing to the establishment of an appreciable nitrate pool in shallow waters in spite of the basin full restriction as marked by the onset of a positive carbon isotope excursion. In sum, our data show that the N-cycle and its fluctuations were associated with variations in sedimentary supply/accommodation ratios induced by tectonically-related paleogeographic changes. The instability of the N-cycle and redox conditions plus the scarcity of nitrate along regression episodes might have hindered the development of early benthic metazoans within the Bambuí seawater and probably within other epicontinental seas during the late Ediacaran-Cambrian transition.


2021 ◽  
Vol 73 ◽  
pp. 101847
Author(s):  
Yuting Chen ◽  
Liqi Wang ◽  
Shixin Zhu
Keyword(s):  

2021 ◽  
Author(s):  
Man Liu ◽  
Guilin Han ◽  
Qian Zhang

Abstract Purpose Post-agricultural restoration affects soil organic carbon (SOC) sequestration and ecosystem nitrogen (N) cycle. However, the control mechanism of SOC sequestration and alteration of ecosystem N status following post-agricultural restoration are not well understood in karst regions. Methods Croplands, abandoned croplands, and native vegetation forests were selected to represent three stages following post-agricultural restoration using a space for time substitution approach in a karst critical zone in Guizhou province, Southwest China. The variations of soil aggregate associated SOC and relationships between soil Ca and SOC were analyzed to identify SOC sequestration potential. Foliar δ15N composition and soil to plant 15N enrichment factor (EF = δ15Nlitter − δ15Nsoil) were analyzed to determine ecosystem N status. Results Macro-aggregate proportions and their SOC concentrations significantly increased following post-agricultural restoration. Soil Ca concentrations non-linearly increased with increasing SOC concentrations of bulk soils and aggregates. Foliar δ15N values and EF values significantly decreased following post-agricultural restoration, mainly attributed to the increasing plant uptake of 15N-depleted inorganic N, which was produced from soil organic nitrogen (SON) mineralization and nitrification. During post-agricultural restoration, the increasing plant biomass and slow SON mineralization led to more inorganic N uptake and less N loss, i.e., a more closed N cycle. Conclusion Soil aggregates and Ca play important roles in promoting SOC sequestration, and ecosystem N cycles are towards closed during post-agricultural restoration in the karst ecosystem.


Sign in / Sign up

Export Citation Format

Share Document