scholarly journals Global soil-climate-biome diagram: linking surface soil properties to climate and biota

Author(s):  
Xia Zhao ◽  
Yuanhe Yang ◽  
Haihua Shen ◽  
Xiaoqing Geng ◽  
Jingyun Fang

Abstract. Surface soils interact strongly with both climate and biota and provide fundamental ecosystem services that maintain food, climate, and human security. However, the quantitative linkages between soil properties, climate, and biota at the global scale remain unclear. By compiling a comprehensive global soil database, we mapped eight major soil properties (bulk density; clay, silt, and sand fractions; soil pH; soil organic carbon [SOC] density; soil total nitrogen [STN] density; and soil C : N mass ratios) in the surface (0–30 cm) soil layer based on machine learning algorithms, and demonstrated the quantitative linkages between surface soil properties, climate, and biota at the global scale (i.e., global soil-climate-biome diagram). On the diagram, bulk density increased significantly with higher mean annual temperature (MAT) and lower mean annual precipitation (MAP); soil clay fraction increased significantly with higher MAT and MAP; Soil pH decreased with higher MAP and lower MAT, and the critical MAP for the transition from alkaline to acidic soil decreased with decreasing MAT; SOC density and STN density both were jointly affected by MAT and MAP, showing an increase at lower MAT and a saturation tendency towards higher MAP. Surface soil physical and chemical properties also showed remarkable variations across biomes. The soil-climate-biome diagram suggests the co-evolution of the soil, climate, and biota under global environmental change.

2019 ◽  
Vol 16 (14) ◽  
pp. 2857-2871 ◽  
Author(s):  
Xia Zhao ◽  
Yuanhe Yang ◽  
Haihua Shen ◽  
Xiaoqing Geng ◽  
Jingyun Fang

Abstract. Surface soils interact strongly with both climate and biota and provide fundamental ecosystem services that maintain food, climate and human security. However, the quantitative linkages between soil properties, climate and biota remain unclear at the global scale. By compiling a comprehensive global soil database, we mapped eight major soil properties (bulk density; clay, silt, and sand fractions; soil pH; soil organic carbon, SOC, density; soil total nitrogen, STN, density; and soil C:N mass ratios) in the surface soil layer (0–30 cm), based on machine learning algorithms, and demonstrated the quantitative linkages between surface soil properties, climate and biota at the global scale, which we call the global soil–climate–biome diagram. In the diagram, bulk density increased significantly with higher mean annual temperature (MAT) and lower mean annual precipitation (MAP); soil clay fraction increased significantly with higher MAT and MAP; soil pH decreased with higher MAP and lower MAT and the “critical MAP”, which means the corresponding MAP at a soil pH of =7.0 (a shift from alkaline to acidic soil), decreased with lower MAT. SOC density and STN density were both jointly affected by MAT and MAP, showing an increase at lower MAT and a saturation towards higher MAP. Surface soil physical and chemical properties also showed remarkable variation across biomes. The soil–climate–biome diagram suggests shifts in soil properties under global climate and land cover change.


2020 ◽  
Author(s):  
SAGAR TANEJA ◽  
Raj Setia ◽  
Baban K Bansod ◽  
Rahul Nigam ◽  
Sharad K Gupta ◽  
...  

2000 ◽  
Vol 64 (3) ◽  
pp. 974-982 ◽  
Author(s):  
John J. Brejda ◽  
Thomas B. Moorman ◽  
Jeffrey L. Smith ◽  
Douglas L. Karlen ◽  
Deborah L. Allan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document