forest floor
Recently Published Documents


TOTAL DOCUMENTS

1685
(FIVE YEARS 221)

H-INDEX

79
(FIVE YEARS 5)

2022 ◽  
Vol 29 (1) ◽  
pp. 46-51
Author(s):  
Julián Andrés Rojas ◽  
Mateo Marín Martínez

More than 40 species of snakes inhabit the humid forests of the Middle Magdalena River Basin of Colombia, yet studies on the basic aspects of snake ecology and natural history in this region are scarce. We searched for Ecuador Sipos (Chironius grandisquamis) during six years (2014–2019) of 6–24-day visual-encounter surveys by day and night in both rainy and dry periods. In 2,967 person-hours, we recorded 16 individuals, half during rainy and half during dry periods. Fourteen of the 16 encounters were in the evening and two in the morning. Snakes recorded during the day were foraging on the ground, whereas those recorded at night were inactive and perched in vegetation. Most inactive individuals had selected perches along streams flanked by riparian forests; ten were in shrubs and four in trees on branches 120–600 cm above the ground. We also record predation on a northern rainfrog (Craugastor metriosistus) on the forest floor during the day.


Forests ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 42
Author(s):  
Kaitlyn E. Trepanier ◽  
Laura Manchola-Rojas ◽  
Bradley D. Pinno

Buried wood is an important but understudied component of reclamation soils. We examined the impacts of buried wood amounts and species on the growth of the common reclamation tree species trembling aspen (Populus tremuloides). In a greenhouse study, aspen seedlings were planted into four soil types, upland derived fine forest floor-mineral mix (fFFMM), coarse forest floor-mineral mix (cFFMM), and lowland derived peat and peat-mineral mix (PMM), that were mixed with either aspen or pine wood shavings at four concentrations (0%, 10%, 20% and 50% of total volume). Height and diameter growth, chlorophyll concentration, and leaf and stem biomass were measured. Soil nutrients and chemical properties were obtained from a parallel study. Buried wood primarily represents an input of carbon to the soil, increasing the C:N ratio, reducing the soil available nitrogen and potentially reducing plant growth. Soil type had the largest impact on aspen growth with fFFMM = peat > PMM > cFFMM. Buried wood type, i.e., aspen or pine, did not have an impact on aspen development, but the amount of buried wood did. In particular, there was an interaction between wood amount and soil type with a large reduction in aspen growth with wood additions of 10% and above on the more productive soils, but no reduction on the less productive soils.


Forests ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1674
Author(s):  
Anna Ilek ◽  
Małgorzata Szostek ◽  
Anna Mikołajczyk ◽  
Marta Rajtar

During the last decade, tree species mixing has been widely supported as a silvicultural approach to reduce drought stress. However, little is known on the influence of tree species mixing on physical properties and the water storage capacity of forest soils (including the forest floor). Thus, the study aimed to analyze the effect of mixing pine needles and oak leaves and mixing fir needles and beech leaves on hydro-physical properties of the litter layer during laboratory tests. We used fir-beech and pine-oak litter containing various shares of conifer needles (i.e., 0, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90 and 100%) to determine the influence of the needle admixture on bulk density, total porosity, macroporosity, water storage capacity, the amount of water stored in pores between organic debris and the degree of saturation of mixed litter compared to broadleaf litter (oak or beech). We found that the admixture of fir needles increased the bulk density of litter from 7.9% with a 5% share of needles to 55.5% with a 50% share (compared to pure beech litter), while the share of pine needles < 40% caused a decrease in bulk density by an average of 3.0–11.0% (compared to pure oak litter). Pine needles decreased the water storage capacity of litter by about 13–14% with the share of needles up to 10% and on average by 28% with the 40 and 50% shares of pine needles in the litter layer. Both conifer admixtures reduced the amount of water stored in the pores between organic debris (pine needles more than fir needles).


Forests ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1562
Author(s):  
Iveta Varnagirytė-Kabašinskienė ◽  
Povilas Žemaitis ◽  
Kęstutis Armolaitis ◽  
Vidas Stakėnas ◽  
Gintautas Urbaitis

In the context of the specificity of soil organic carbon (SOC) storage in afforested land, nutrient-poor Arenosols and nutrient-rich Luvisols after afforestation with coniferous and deciduous tree species were studied in comparison to the same soils of croplands and grasslands. This study analysed the changes in SOC stock up to 30 years after afforestation of agricultural land in Lithuania, representing the cool temperate moist climate region of Europe. The SOC stocks were evaluated by applying the paired-site design. The mean mass and SOC stocks of the forest floor in afforested Arenosols increased more than in Luvisols. Almost twice as much forest floor mass was observed in coniferous than in deciduous stands 2–3 decades after afforestation. The mean bulk density of fine (<2 mm) soil in the 0–30 cm mineral topsoil layer of croplands was higher than in afforested sites and grasslands. The clear decreasing trend in mean bulk density due to forest stand age with the lowest values in the 21–30-year-old stands was found in afforested Luvisols. In contrast, the SOC concentrations in the 0–30 cm mineral topsoil layer, especially in Luvisols afforested with coniferous species, showed an increasing trend due to the influence of stand age. The mean SOC values in the 0–30 cm mineral topsoil layer of Arenosols and Luvisols during the 30 years after afforestation did not significantly differ from the adjacent croplands or grasslands. The mean SOC stock slightly increased with the forest stand age in Luvisols; however, the highest mean SOC stock was detected in the grasslands. In the Arenosols, there was higher SOC accumulation in the forest floor with increasing stand age than in the Luvisols, while the proportion of SOC stocks in mineral topsoil layers was similar and more comparable to grasslands. These findings suggest encouragement of afforestation of former agricultural land under the current climate and soil characteristics in the region, but the conversion of perennial grasslands to forest land should be done with caution.


Diversity ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 578
Author(s):  
Anna Seniczak ◽  
Stanisław Seniczak ◽  
Radomir Graczyk ◽  
Sławomir Kaczmarek ◽  
Bjarte H. Jordal ◽  
...  

Forest water bodies, e.g., pools, constitute ‘environmental islands’ within forests, with specific flora and fauna thus contributing considerably to the landscape biodiversity. The mite communities of Oribatida and Mesostigmata in two distinctive microhabitats, water-soaked Sphagnum mosses at the edge of a pool and other mosses growing on the medium-wet forest floor nearby, were compared in a limestone forest in Southern Norway. In total, 16,189 specimens of Oribatida representing 98 species, and 499 specimens of Mesostigmata, from 23 species, were found. The abundance and species number of Oribatida were significantly lower at the pool, while the abundance and species richness of Mesostigmata did not differ. Both the communities of Oribatida and of Mesostigmata differed among the microhabitats studied and analysis showed significant differences between the community structures in the two microhabitats. The most abundant oribatid species in Sphagnum mosses was Parachipteria fanzagoi (Jacot, 1929), which made up over 30% of all Oribatida, followed by Atropacarus striculus (C.L. Koch, 1835) and Tyrphonothrus maior (Berlese, 1910) (14% and 12% of Oribatida, respectively). Among Mesostigmata Paragamasus parrunciger (Bhattacharyya, 1963) dominated (44% of Mesostigmata), followed by P. lapponicus (Trägårdh, 1910) (14% of Mesostigmata). Most of these species, except P. lapponicus, were either absent or very uncommon in the other microhabitat studied. The specific acarofauna of the forest pool shows the importance of such microhabitats in increasing forest diversity. In addition, a quarter of the mite species found had not been reported from Norwegian broadleaf forests before, including five new species records for Norway and four new to Fennoscandia, all found in the medium-wet microhabitat. Most of these species are rarely collected and have their northernmost occurrence in the studied forest.


2021 ◽  
pp. 119873
Author(s):  
David L. Dick ◽  
Terrence G. Gardner ◽  
Juan P. Frene ◽  
Joshua L. Heitman ◽  
Eric B. Sucre ◽  
...  

2021 ◽  
Vol 914 (1) ◽  
pp. 012002
Author(s):  
Prastyono ◽  
L Haryjanto ◽  
A I Putri ◽  
T Herawan ◽  
M A Fauzi ◽  
...  

Abstract Ironwood (Eusideroxylon zwageri) is one of Indonesia’s most economically valuable timber tree species and was listed as Vulnerable in 1998 by the IUCN. To support conservation activities and establish E. zwageri’s plantation, good quality planting stocks should be collected from specific seed sources. Currently, there is only one ironwood seed source in Sumatra that has been registered. This study aimed to assess the potential for an ironwood stand on the KPPN Bulian of the District VIII of PT. Wirakarya Sakti is to be proposed as a seed source. The assessment was conducted on July 2020 by a 100% inventory of ironwood trees in the area of 43 ha. Every individual tree and copy of ironwood was measured for its stem diameter and tree height and observed for its health, flowers, fruits, and seedlings in the ground. In total, 1,029 individual trees, copies and seedlings were recorded. Among them, 116 trees were found to have young fruits and seedlings emergence in the forest floor. Generally, the ironwood stand is sound and meets the criteria to be registered as an identified seed stand of ironwood.


2021 ◽  
Vol 21 (3) ◽  
pp. 160-167
Author(s):  
ITSNATANI SALMA ◽  
ZURIANA SIREGAR ◽  
ALIA RIZKI ◽  
SUWARNO SUWARNO

Butterflies are insects that live cosmopolitan. Some butterflies in tropical forests look for food sources from sucking the juice of ripe fruits that have fallen on the forest floor. Fruit-feeding butterflies can adapt in finding food sources, selecting and sucking food effectively. Fruit contains varying concentrations of sugar and nitrogen. The existence of fruit-feeding butterflies in tropical rain forests is influenced by the availability and quality of food sources as well as other supporting factors such as temperature, humidity, and light intensity. The purpose of this study was to identify fruit-feeding butterflies and their preferences for banana and pineapple baits in the Soraya Research Station Area, Leuser Ecosystem, Aceh, Indonesia from September to November 2020. Six forest trail locations were selected as trap locations. A total of 360 cylindrical gauze baited traps (80 cm high and 35 cm diameter) were installed on six trails/line transects. Baited traps were set at three different heights, that is at the understorey level (± 0-2 m), midstorey level (± 5-6 m), and overstorey level (± 10-11 m) with a distance of ± 5-10 m. The distance between location points is ± 250 m. The fruit baits used in this trap were ripe bananas and pineapples. The results obtained were 37 species with 176 individuals trapped on banana bait and 50 species with 183 individuals on pineapple bait. However, the results of the t-test using the Man-Whitney test showed no significant difference between the banana and pineapple bait used.


Sign in / Sign up

Export Citation Format

Share Document