scholarly journals Experimental fossilisation of viruses from extremophilic Archaea

2011 ◽  
Vol 8 (6) ◽  
pp. 1465-1475 ◽  
Author(s):  
F. Orange ◽  
A. Chabin ◽  
A. Gorlas ◽  
S. Lucas-Staat ◽  
C. Geslin ◽  
...  

Abstract. The role of viruses at different stages of the origin of life has recently been reconsidered. It appears that viruses may have accompanied the earliest forms of life, allowing the transition from an RNA to a DNA world and possibly being involved in the shaping of tree of life in the three domains that we know presently. In addition, a large variety of viruses has been recently identified in extreme environments, hosted by extremophilic microorganisms, in ecosystems considered as analogues to those of the early Earth. Traces of life on the early Earth were preserved by the precipitation of silica on the organic structures. We present the results of the first experimental fossilisation by silica of viruses from extremophilic Archaea (SIRV2 – Sulfolobus islandicus rod-shaped virus 2, TPV1 – Thermococcus prieurii virus 1, and PAV1 – Pyrococcus abyssi virus 1). Our results confirm that viruses can be fossilised, with silica precipitating on the different viral structures (proteins, envelope) over several months in a manner similar to that of other experimentally and naturally fossilised microorganisms. This study thus suggests that viral remains or traces could be preserved in the rock record although their identification may be challenging due to the small size of the viral particles.

2011 ◽  
Vol 8 (2) ◽  
pp. 2235-2257 ◽  
Author(s):  
F. Orange ◽  
A. Chabin ◽  
A. Gorlas ◽  
S. Lucas-Staat ◽  
C. Geslin ◽  
...  

Abstract. The role of viruses at different stages of the origin of life has recently been reconsidered. It appears that viruses may have accompanied the earliest forms of life, allowing the transition from an RNA to a DNA world and possibly being involved in the shaping of tree of life in the three domains that we know presently. In addition, a large variety of viruses has been recently identified in extreme environments, hosted by extremophilic microorganisms, in ecosystems considered as analogues to those of the early Earth. The earliest traces of life were preserved by the precipitation of silica on organic structures. The study of the in situ and experimental fossilisation of microorganisms allows better understanding of the fossilisation processes and helps identification of traces of life in ancient rocks. In a continuation of these studies, we present the results of the first experimental fossilisation by silica of viruses from extremophilic Archaea (SIRV2 – Sulfolobus islandicus Virus 2, TPV1 – Thermococcus prieurii virus 1, and PAV1 – Pyrococcus abyssi virus 1). Our results confirm that viruses can be fossilised, with silica precipitating on the different viral structures (proteins, envelope) over several months. However differences in the silicification process were noticed, depending on the viral structure and composition. The fossilisation mechanism is similar to that of the fossilisation of microorganisms. This study thus suggests that viral remains or traces could be preserved in the rock record although their identification may be challenging due to the small size of the viral particles.


Astrobiology ◽  
2020 ◽  
Vol 20 (9) ◽  
pp. 1121-1149 ◽  
Author(s):  
G.R. Osinski ◽  
C.S. Cockell ◽  
A. Pontefract ◽  
H.M. Sapers

2019 ◽  
Author(s):  
Joana C. Xavier ◽  
Wim Hordijk ◽  
Stuart Kauffman ◽  
Mike Steel ◽  
William F. Martin

AbstractModern cells embody metabolic networks containing thousands of elements and form autocatalytic molecule sets that produce copies of themselves. How the first self-sustaining metabolic networks arose at life’ s origin is a major open question. Autocatalytic molecule sets smaller than metabolic networks were proposed as transitory intermediates at the origin of life, but evidence for their role in prebiotic evolution is lacking. Here we identify reflexively autocatalytic food-generated networks (RAFs)—self-sustaining networks that collectively catalyze all their reactions—embedded within microbial metabolism. RAFs in the metabolism of ancient anaerobic autotrophs that live from H2 and CO2 generate amino acids and bases, the monomeric components of protein and RNA, and acetyl-CoA, but amino acids and bases do not generate metabolic RAFs, indicating that small-molecule catalysis preceded polymers in biochemical evolution. RAFs uncover intermediate stages in the origin of metabolic networks, narrowing the gaps between early-Earth chemistry and life.


2020 ◽  
Author(s):  
Kazumu Kaneko ◽  
Yasuhito Sekine ◽  
Takazo Shibuya ◽  
Hisahiro Ueda ◽  
Natsumi Noda

Life ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 976
Author(s):  
Craig Robert Walton ◽  
Oliver Shorttle

Compartmentalisation by bioenergetic membranes is a universal feature of life. The eventual compartmentalisation of prebiotic systems is therefore often argued to comprise a key step during the origin of life. Compartments may have been active participants in prebiotic chemistry, concentrating and spatially organising key reactants. However, most prebiotically plausible compartments are leaky or unstable, limiting their utility. Here, we develop a new hypothesis for an origin of life environment that capitalises upon, and mitigates the limitations of, prebiotic compartments: multi-compartmentalised layers in the near surface environment—a ’scum’. Scum-type environments benefit from many of the same ensemble-based advantages as microbial biofilms. In particular, scum layers mediate diffusion with the wider environments, favouring preservation and sharing of early informational molecules, along with the selective concentration of compatible prebiotic compounds. Biofilms are among the earliest traces imprinted by life in the rock record: we contend that prebiotic equivalents of these environments deserve future experimental investigation.


2018 ◽  
Author(s):  
soumya banerjee ◽  
joyeeta ghose

Information plays a critical role in complex biological systems. Complex systems like immune systems andant colonies co-ordinate heterogeneous components in a decentralized fashion. How do these distributeddecentralized systems function? One key component is how these complex systems efficiently processinformation. These complex systems have an architecture for integrating and processing information comingin from various sources and points to the value of information in the functioning of different complexbiological systems. This paper is a teaching resource that explains the role of information processing inquestions around the origin of life and suggests how computational simulations may yield insights intoquestions related to the origin of life.


Sign in / Sign up

Export Citation Format

Share Document