early earth
Recently Published Documents


TOTAL DOCUMENTS

777
(FIVE YEARS 238)

H-INDEX

67
(FIVE YEARS 9)

Eos ◽  
2022 ◽  
Vol 103 ◽  
Author(s):  
Jure Japelj

Tidal heating may have raised the surface temperature of early Earth and triggered global volcanism, a new study says.


2022 ◽  
Author(s):  
Junxing Chen ◽  
Hehe Jiang ◽  
Ming Tang ◽  
Jihua Hao ◽  
Meng Tian ◽  
...  

Abstract Terrestrial planets Venus and Earth have similar sizes, masses, and bulk compositions, but only Earth developed planetary-scale plate tectonics. Plate tectonics generates weatherable fresh rocks and transfers surface carbon back to Earth’s interior, which provides a long-term climate feedback, serving as a thermostat to keep Earth a habitable planet. Yet Venus shares a few common features with early Earth, such as stagnant-lid tectonics and the possible early development of a liquid ocean. Given all these similarities with early Earth, why would Venus fail to develop global-scale plate tectonics? In this study, we explore solutions to this problem by examining Venus’ slab densities under hypothesized subduction-zone conditions. Our petrologic simulations show that eclogite facies may be reached at greater depths on Venus than on Earth, and Venus’ slab densities are consistently lower than Earth’s. We suggest that the lack of sufficient density contrast between the high-pressure metamorphosed slab and mantle rocks may have impeded self-sustaining subduction. Although plume-induced crustal downwelling exists on Venus, the dipping of Venus’ crustal rocks to mantle depth fails to transition into subduction tectonics. As a consequence, the supply of fresh silicate rocks to the surface has been limited. This missing carbon sink eventually diverged the evolution of Venus’ surface environment from that of Earth.


Geology ◽  
2021 ◽  
Author(s):  
Oscar Laurent ◽  
Jean-François Moyen ◽  
Jörn-Frederik Wotzlaw ◽  
Jana Björnsen ◽  
Olivier Bachmann

The oldest geological materials on Earth are Hadean (>4 Ga) detrital zircon grains. Their chemistry and apparently low Ti-in-zircon temperatures (≤700 °C) are considered to be inconsistent with crystallization in a magma of the tonalite-trondhjemite-granodiorite (TTG) suite, although these are the dominant Archean (4.0–2.5 Ga) silicic rocks. Using a new data set of trace element contents in zircons from Paleoarchean Barberton TTGs (South Africa) and thermodynamic modeling, we show that these zircons have crystallized at near-solidus conditions from a compositionally uniform granitic melt. This melt is residual from the crystallization of a less evolved (tonalitic) parent and thereby shows major and trace element compositions different from bulk TTG rocks. A global compilation reveals that most Hadean detrital and Archean TTG-hosted grains share a peculiar zircon trace element signature that is distinct from the chemical trends defined by Phanerozoic zircons. Our model shows that the low Ti contents of early Earth zircons reflect crystallization at higher temperatures (720–800 °C) than initially inferred due to lower modeled TiO2 activity in the melt relative to previous estimates. We therefore propose that near-solidus zircon crystallization from a chemically evolved melt in a TTG-like magmatic environment was the dominant zircon-forming process on the early Earth.


Eos ◽  
2021 ◽  
Vol 102 ◽  
Author(s):  
Zack Savitsky

Australian rocks 3.25 billion years old preserved the oldest signs of Earth’s stable magnetic field and quickly moving crust, critical elements of life’s evolution.


Author(s):  
V. M. Zhmakin

The nature of carbon, initial components, molecules of homochiral abiogenic synthesis and their preservation from decay and racemization for more than 4.5 billion years in carbonaceous chondrites has not been established. In the oxygen-free atmospheres of the nebula and early Earth, hydrogen and hydrogen-containing gases were oxidized with carbon monoxide and carbon dioxide to form carbon and water, as well as the intermediates of these reactions, formaldehyde and methane acid. Together with ammonia, they were the initial components of organic synthesis. According to the Rebinder rule, carbon adsorbs hydrogen well, including in organic molecules. In this connection, experiments with the assumed conditions of the early Earth were carried out by adsorption on carbon to obtain R-(rectus, Latin) ribose from formaldehyde, and S-(sinister) serine from formaldehyde, methane acid and ammonia. For other S-amino acids, a stereo chemical justification of their formation based on S-serine is given. For carbonaceous chondrites, the results of the above experiments were confirmed by the correlation of an increase in homochiral excess with an increase in the amount of hydrogen in aldonic acids and lactic acid with a coefficient of 0.94 and 0.85 in amino acids. The justification of the homochiral process will reduce the costs of searching for life on planets, for scientific research, for the production of medicines, perfumes, food, and so on. Doubts about the extraterrestrial origin of homochiral enantiomers in carbonaceous chondrites arise most often due to a lack of understanding of the reasons for their appearance. This work will significantly reduce such skepticism.


Molecules ◽  
2021 ◽  
Vol 26 (23) ◽  
pp. 7394
Author(s):  
Samuel Paula ◽  
Liam S. Goulding ◽  
Katherine N. Robertson ◽  
Jason A. C. Clyburne

Very simple chemistry can result in the rapid and high-yield production of key prebiotic inorganic molecules. The two reactions investigated here involve such simple systems, (a) carbon disulfide (CS2) and acetate (CH3COO¯) and (b) sulfur dioxide (SO2) and formate (HCOO¯). They have been carried out under non-aqueous conditions, either in an organic solvent or with a powdered salt exposed to the requisite gas. Under such dry conditions the first reaction generated the thioacetate anion [CH3COS]¯ while the second produced the radical [SO2·]¯anion. Anhydrous conditions are not rare and may have arisen on the early earth at sites where an interface between different phases (liquid/gas or solid/gas) could be generated. This is one way to rationalize the formation of molecules and ions (such as we have produced) necessary in the prebiotic world. Interpretation of our results provides insight into scenarios consistent with the more prominent theories of abiogenesis.


2021 ◽  
Author(s):  
Alan Ianeselli ◽  
Damla Tetiker ◽  
Julian Stein ◽  
Alexandra Kühnlein ◽  
Christof B. Mast ◽  
...  

AbstractKey requirements for the first cells on Earth include the ability to compartmentalize and evolve. Compartmentalization spatially localizes biomolecules from a dilute pool and an evolving cell, which, as it grows and divides, permits mixing and propagation of information to daughter cells. Complex coacervate microdroplets are excellent candidates as primordial cells with the ability to partition and concentrate molecules into their core and support primitive and complex biochemical reactions. However, the evolution of coacervate protocells by fusion, growth and fission has not yet been demonstrated. In this work, a primordial environment initiated the evolution of coacervate-based protocells. Gas bubbles inside heated rock pores perturb the coacervate protocell distribution and drive the growth, fusion, division and selection of coacervate microdroplets. Our findings provide a compelling scenario for the evolution of membrane-free coacervate microdroplets on the early Earth, induced by common gas bubbles within heated rock pores.


Sign in / Sign up

Export Citation Format

Share Document