scholarly journals Constant wind regimes during the Last Glacial Maximum and early Holocene: evidence from Little Llangothlin Lagoon, New England Tablelands, eastern Australia

2016 ◽  
Vol 12 (7) ◽  
pp. 1435-1444 ◽  
Author(s):  
James Shulmeister ◽  
Justine Kemp ◽  
Kathryn E. Fitzsimmons ◽  
Allen Gontz

Abstract. Here we present the results of a multi-proxy investigation – integrating geomorphology, ground-penetrating radar, and luminescence dating – of a high-elevation lunette and beach berm in northern New South Wales, eastern Australia. The lunette occurs on the eastern shore of Little Llangothlin Lagoon and provides evidence for a lake high stand combined with persistent westerly winds at the Last Glacial Maximum (LGM – centring on 21.5 ka) and during the early Holocene (ca. 9 and 6 ka). The reconstructed atmospheric circulation is similar to the present-day conditions, and we infer no significant changes in circulation at those times, as compared to the present day. Our results suggest that the Southern Hemisphere westerlies were minimally displaced in this sector of Australasia during the latter part of the last ice age. Our observations also support evidence for a more positive water balance at the LGM and early Holocene in this part of the Australian sub-tropics.

2016 ◽  
Author(s):  
James Shulmeister ◽  
Justine Kemp ◽  
Kathryn E. Fitzsimmons ◽  
Allen Gontz

Abstract. Here we present the results of a multi-proxy investigation, integrating geomorphology, ground penetrating radar and luminescence dating, of a high elevation lunette and beach berm in northern New South Wales, eastern Australia. The lunette occurs on the eastern shore of Little Llangothlin Lagoon and provides evidence for a lake high stand combined with persistent westerly winds at the Last Glacial Maximum (LGM – centring on 21.5 ka) and during the early Holocene (c. 9 and 6 ka). The reconstructed atmospheric circulation is similar to the present-day conditions and we infer no significant changes in circulation at those times, as compared to the present day. Our results suggest that the Southern Hemisphere westerlies were minimally displaced in this sector of Australasia during the latter part of the last ice age. Our observations also support evidence for a more positive water balance at the LGM and early Holocene in this part of the Australian sub-tropics.


Geology ◽  
2020 ◽  
Vol 48 (8) ◽  
pp. 826-829 ◽  
Author(s):  
F. Pöppelmeier ◽  
P. Blaser ◽  
M. Gutjahr ◽  
S.L. Jaccard ◽  
M. Frank ◽  
...  

Abstract Increased carbon sequestration in the ocean subsurface is commonly assumed to have been one of the main causes responsible for lower glacial atmospheric CO2 concentrations. Remineralized carbon must have been stored away from the atmosphere for thousands of years, yet the water mass structure accommodating such increased carbon storage continues to be debated. Here, we present new sediment-derived bottom-water neodymium isotope records that allow fingerprinting of water masses and provide a more complete picture of the Atlantic Meridional Overturning Circulation geometry during the Last Glacial Maximum. These results suggest that the vertical and meridional structure of the Atlantic water mass distribution only experienced minor changes since the last ice age. In particular, we find no compelling evidence supporting glacial southern-sourced water substantially expanding to shallower depths and farther into the Northern Hemisphere than today, which had been previously inferred from stable carbon isotope (δ13C) reconstructions. We argue that depleted δ13C values observed in the deep Northwest Atlantic do not necessarily indicate the presence of southern-sourced water. Instead, these values may represent a northern-sourced water mass with lower than modern preformed δ13C values that were further modified downstream by increased sequestration of remineralized carbon, facilitated by a more sluggish glacial deep circulation, corroborating previous evidence.


2020 ◽  
Author(s):  
Frerk Pöppelmeier ◽  
Patrick Blaser ◽  
Marcus Gutjahr ◽  
Samuel Jaccard ◽  
Martin Frank ◽  
...  

<p>Increased carbon sequestration in the ocean subsurface is commonly assumed to have been one of the main causes responsible for lower glacial atmospheric CO<sub>2</sub> concentrations. This carbon must have been stored away from the atmosphere for thousands of years, yet the water mass structure accommodating such increased carbon storage continues to be debated. Here we present new sediment derived bottom water neodymium isotope data that allow fingerprinting of water masses and their mixtures and provide a more complete picture of the Atlantic overturning circulation geometry during the Last Glacial Maximums. These results suggest that the vertical and meridional structure of the Atlantic deep water mass distribution only experienced minor changes since the last ice age. In particular, we find no compelling evidence supporting glacial southern sourced water substantially expanding to shallower depths and farther into the northern hemisphere than today, which has been inferred from stable carbon isotope reconstructions. We argue that depleted δ<sup>13</sup>C values observed in the deep Northwest Atlantic do not necessarily indicate the presence of southern sourced water. Instead, these values may represent a northern sourced water mass with lower than modern preformed δ<sup>13</sup>C values that were further modified downstream by increased sequestration of remineralized carbon, facilitated by a more sluggish glacial deep circulation. If proven to be correct, the glacial water mass structure inferred from Nd isotopes has profound implications on our understanding of the deep ocean carbon storage during the Last Glacial Maximum.</p>


Sign in / Sign up

Export Citation Format

Share Document