scholarly journals Review of Extratropical cyclones over the North Atlantic and Western Europe during the Last Glacial Maximum and implications for proxy interpretation by Pinto and Ludwig

2019 ◽  
Author(s):  
Anonymous
2020 ◽  
Vol 16 (2) ◽  
pp. 611-626 ◽  
Author(s):  
Joaquim G. Pinto ◽  
Patrick Ludwig

Abstract. Extratropical cyclones are a dominant feature of the midlatitudes, as their passage is associated with strong winds, precipitation and temperature changes. The statistics and characteristics of extratropical cyclones over the North Atlantic region exhibit some fundamental differences between pre-industrial (PI) and Last Glacial Maximum (LGM) climate conditions. Here, the statistics are analysed based on results of a tracking algorithm applied to global PI and LGM climate simulations. During the LGM, both the number and the intensity of detected cyclones were higher compared to PI. In particular, increased cyclone track activity is detected close to the Laurentide ice sheet and over central Europe. To determine changes in cyclone characteristics, the top 30 extreme storm events for PI and LGM have been simulated with a regional climate model and high resolution (12.5 km grid spacing) over the eastern North Atlantic and western Europe. Results show that LGM extreme cyclones were characterised by weaker precipitation, enhanced frontal temperature gradients and stronger wind speeds than PI analogues. These results are in line with the view of a colder and drier Europe, characterised by little vegetation and affected by frequent dust storms, leading to reallocation and build-up of thick loess deposits in Europe.


2020 ◽  
Author(s):  
Laurie Menviel ◽  
Paul Spence ◽  
Luke Skinner ◽  
Kazuyo Tachikawa ◽  
Tobias Friedrich ◽  
...  

<p>While paleoproxy records and modelling studies consistently suggest that North Atlantic  Deep Water (NADW) was shallower at the Last Glacial Maximum (LGM) than during pre-industrial times, its strength is still subject to debate partly due to different signals across the North Atlantic. Here, using a series of LGM experiments performed with a carbon isotopes enabled Earth system model, we show that proxy records are consistent with a shallower and weaker NADW. A significant equatorward advance of sea-ice over the Labrador Sea and the Nordic Seas shifts the NADW convection sites to the south of the Norwegian Sea. While the deep western boundary current in the Northwest Atlantic weakens with NADW, a change in density gradients strengthens the deep southward flow in the Northeast Atlantic. A shoaling and weakening of NADW further allow penetration of Antarctic Bottom Water in the North Atlantic despite its transport being reduced. This resultant globally weaker oceanic circulation leads to an increase in deep ocean carbon of ~500 GtC, thus significantly contributing to the lower LGM atmospheric CO<sub>2</sub> concentration.</p><p> </p>


2020 ◽  
Author(s):  
Joaquim G. Pinto ◽  
Patrick Ludwig

<p>Extratropical cyclones are a dominant feature of the mid-latitudes, as their passage is associated with strong winds, precipitation, and temperature changes. The statistics and characteristics of extratropical cyclones over the North Atlantic region exhibit some fundamental differences between Pre-Industrial (PI) and Last Glacial Maximum (LGM) climate conditions. Here, the statistics are analysed based on results of a tracking algorithm applied to global PI and LGM climate simulations. During the LGM, both the number and the intensity of detected cyclones was higher compared to PI. In particular, increased cyclone track activity is detected close to the Laurentide ice sheet and over central Europe. To determine changes in cyclone characteristics, the top 30 extreme storm events for PI and LGM have been simulated with a regional climate model and high resolution (12.5 km grid spacing) over the eastern North Atlantic and Western Europe. Results show that LGM extreme cyclones were characterised by weaker precipitation, enhanced frontal temperature gradients, and stronger wind speeds than PI analogues. These results are in line with the view of a colder and drier Europe, characterised by little vegetation and affected by frequent dust storms, leading to reallocation and build-up of thick loess deposits in Europe.</p>


2019 ◽  
Author(s):  
Joaquim G. Pinto ◽  
Patrick Ludwig

Abstract. Extratropical cyclones are a dominant feature of the mid-latitudes, as their passage is associated with strong winds, precipitation, and temperature changes. The statistics and characteristics of extratropical cyclones over the North Atlantic region exhibit some fundamental differences between present day (PI) and Last Glacial Maximum (LGM) climate conditions. Here, the statistics are analysed based on results of a tracking algorithm applied to global PI and LGM climate simulations. During the LGM, both the number and the intensity of detected cyclones was higher compared to PI. In particular, increased cyclone track activity is detected close to the Laurentide ice sheet and over central Europe. To determine changes in cyclone characteristics, the top 30 extreme storm events for PI and LGM have been simulated with a regional climate model and high resolution (12.5 km grid spacing) over the eastern North Atlantic and Western Europe. Results show that LGM extreme cyclones were characterised by weaker precipitation, enhanced frontal temperature gradients, and stronger wind speeds than PI analogues. These results are in line with the view of a colder and drier Europe, characterised by little vegetation and affected by frequent dust storms, leading to reallocation and build-up of thick loess deposits in Europe.


Sign in / Sign up

Export Citation Format

Share Document