north atlantic ocean
Recently Published Documents


TOTAL DOCUMENTS

3469
(FIVE YEARS 397)

H-INDEX

109
(FIVE YEARS 9)

Author(s):  
Gillian R. Foulger ◽  
Laurent Gernigon ◽  
Laurent Geoffroy

ABSTRACT We propose a new, sunken continent beneath the North Atlantic Ocean that we name Icelandia. It may comprise blocks of full-thickness continental lithosphere or extended, magma-inflated continental layers that form hybrid continental-oceanic lithosphere. It underlies the Greenland-Iceland-Faroe Ridge and the Jan Mayen microplate complex, covering an area of ~600,000 km2. It is contiguous with the Faroe Plateau and known parts of the submarine continental rifted margin offshore Britain. If these are included in a “Greater Icelandia,” the entire area is ~1,000,000 km2 in size. The existence of Icelandia needs to be tested. Candidate approaches include magnetotelluric surveying in Iceland; ultralong, full-crust-penetrating reflection profiling along the length of the Greenland-Iceland-Faroe Ridge; dating zircons collected in Iceland; deep drilling; and reappraisal of the geology of Iceland. Some of these methods could be applied to other candidate sunken continents that are common in the oceans.


2022 ◽  
Vol 48 (1) ◽  
pp. 3-8
Author(s):  
Keith D. Mullin ◽  
Lisa Steiner ◽  
Charlotte Dunn ◽  
Diane Claridge ◽  
Laura González García ◽  
...  

2022 ◽  
Vol 120 (1) ◽  
pp. 26-38
Author(s):  
Katie Viducic ◽  
Lisa J. Natanson ◽  
Megan V. Winton ◽  
Austin Humphries

Abstract Meltwater from Greenland is an important freshwater source for the North Atlantic Ocean, released into the ocean at the head of fjords in the form of runoff, submarine melt and icebergs. The meltwater release gives rise to complex in-fjord transformations that result in its dilution through mixing with other water masses. The transformed waters, which contain the meltwater, are exported from the fjords as a new water mass “Glacially Modified Water” (GMW). Here we use summer hydrographic data collected from 2013 to 2019 in Upernavik, a major glacial fjord in northwest Greenland, to describe the water masses that flow into the fjord from the shelf and the exported GMWs. Using an Optimum Multi-Parameter technique across multiple years we then show that GMW is composed of 57.8 ±8.1% Atlantic Water, 41.0 ±8.3% Polar Water, 1.0 ±0.1% subglacial discharge and 0.2 ±0.2% submarine meltwater. We show that the GMW fractional composition cannot be described by buoyant plume theory alone since it includes lateral mixing within the upper layers of the fjord not accounted for by buoyant plume dynamics. Consistent with its composition, we find that changes in GMW properties reflect changes in the AW and PW source waters. Using the obtained dilution ratios, this study suggests that the exchange across the fjord mouth during summer is on the order of 50 mSv (compared to a freshwater input of 0.5 mSv). This study provides a first order parameterization for the exchange at the mouth of glacial fjords for large-scale ocean models.


Author(s):  
Abhishek Naik ◽  
Mark Smithers ◽  
Pia H. Moisander

Marine biofilms are diverse microbial communities and important ecological habitats forming on surfaces submerged in the ocean. Biofilm communities resist environmental disturbance, making them a nuisance to some human activities (‘biofouling’). Anti-fouling solutions rarely address the underlying stability or compositional responses of these biofilms. Using bulk measurements and molecular analyses, we examined temporal and UV-C antifouling-based shifts in marine biofilms in the coastal Western North Atlantic Ocean during early fall. Over a 24-d period, bacterial communities shifted from early dominance of Gammaproteobacteria to increased proportions of Alphaproteobacteria, Bacteroidia and Acidimicrobiia. In a network analysis based on temporal covariance, Rhodobacteraceae (Alphaproteobacteria) nodes were abundant and densely connected with generally positive correlations. In the eukaryotic community, persistent algal, protistan, and invertebrate groups were observed, although consistent temporal succession was not detected. Biofilm UV-C treatment at 13 and 20 days resulted in losses of chlorophyll a and transparent exopolymer particles, indicating biomass disruption. Bacterial community shifts suggested that UV-C treatment decreased biofilm maturation rate and was associated with proportional shifts among diverse bacterial taxa. UV-C treatment was also associated with increased proportions of protists potentially involved in detritivory and parasitism. Older biofilm communities had increased resistance to UV-C, suggesting that early biofilms are more susceptible to UV-C based antifouling. The results suggest that UV-C irradiation is potentially an effective antifouling method in marine environments in terms of biomass removal and in slowing maturation. However, as they mature, biofilm communities may accumulate microbial members that are tolerant or resilient under UV-treatment. Importance Marine biofilms regulate processes from organic matter and pollutant turnover to eukaryotic settlement and growth. Biofilm growth and eukaryotic settlement interfering with human activities via growth on ship hulls, aquaculture operations, or other marine infrastructure are called ‘biofouling’. There is a need to develop sustainable anti-fouling techniques by minimizing impacts to surrounding biota. We use the biofouling-antifouling framework to test hypotheses about marine biofilm succession and stability in response to disturbance, using a novel UV-C LED device. We demonstrate strong bacterial biofilm successional patterns and detect taxa potentially contributing to stability under UV-C stress. Despite UV-C-associated biomass losses and varying UV susceptibility of microbial taxa, we detected high compositional resistance among biofilm bacterial communities, suggesting decoupling of disruption in biomass and community composition following UV-C irradiation. We also report microbial covariance patterns over 24 days of biofilm growth, pointing to areas for study of microbial interactions and targeted antifouling.


Sign in / Sign up

Export Citation Format

Share Document