The relationship of Western Disturbances to precipitation in the upper Indus River basin

Author(s):  
Jean-Philippe Baudouin ◽  
Michael Herzog ◽  
Cameron A. Petrie

<p>The upper Indus River basin is characterised by heavy precipitation falling near the foothills of the major mountain ranges, during two wet seasons: winter and summer. Winter precipitation is known to be related to the passing of upper-level synoptic systems embedded in the subtropical westerly jet called Western Disturbances. Here, we investigate the precipitation variability in relation to the Western Disturbances at the synoptic scale, using ERA5 reanalysis data. We take advantage of the results of a previous study that showed that the precipitation is mostly triggered by the forced uplift of a low-level moisture-rich southerly flow across the ranges. We show that the low-level southerly wind triggering the precipitation is produced by the interaction of a Western Disturbance with a baroclinic front located between the Iranian plateau and the Arabian Sea. Ahead of the Western Disturbance, low-level winds draw moisture from the extreme north of the Arabian Sea, the Persian Gulf, and to a lower extent, the Red Sea. At the rear, moisture is depleted by the advection of continental dry air in the Indus River basin. However, the balance between moisture drawing and depletion depends on the characteristics of the Western Disturbance, leading to differences in precipitation intensity. We found the jet position and western Russia blockings to play a role in this. These findings offer clues to understand the longer-term precipitation variability in the area.</p>

2015 ◽  
Vol 416 ◽  
pp. 12-20 ◽  
Author(s):  
Ken L. Ferrier ◽  
Jerry X. Mitrovica ◽  
Liviu Giosan ◽  
Peter D. Clift

2020 ◽  
Vol 148 (7) ◽  
pp. 2801-2818 ◽  
Author(s):  
Jean-Philippe Baudouin ◽  
Michael Herzog ◽  
Cameron A. Petrie

Abstract The upper Indus River basin is characterized by biseasonal heavy precipitation falling on the foothills of major mountain ranges (Hindu Kush, Karakorm, Himalayas). Numerical studies have confirmed the importance of topography for the triggering of precipitation and investigated the processes responsible for specific events, but a systematic and cross-seasonal analysis has yet to be conducted. Using ERA5 reanalysis data and statistical methods, we show that more than 80% of the precipitation variability is explained by southerly moisture transport at 850 and 700 hPa, along the Himalayan foothills. We conclude that most of the precipitation is generated by the forced uplift of a cross-barrier flow. This process explains both wet seasons, despite different synoptic conditions, but is more important in winter. The precipitation signal is decomposed into the contribution of each altitude and each variable (wind and moisture), which exhibit different seasonality. The winter wet season is dominated by moisture transport at higher altitude, and is triggered by an increase in wind. By contrast, the summer wet season is explained by an increase in moisture at both altitudes, while wind is of secondary importance. Selected CMIP6 climate models are able to represent the observed links between precipitation and southerly moisture transport, despite important seasonal biases that are due to a misrepresentation of the seasonality in the magnitude of the southerly wind component.


2018 ◽  
Vol 213 ◽  
pp. 346-360 ◽  
Author(s):  
Ijaz Ahmad ◽  
Fan Zhang ◽  
Muhammad Tayyab ◽  
Muhammad Naveed Anjum ◽  
Muhammad Zaman ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document