scholarly journals Detecting regime transitions in time series using dynamic mode decomposition

Author(s):  
Georg Gottwald ◽  
Federica Gugole

<p>We employ the framework of the Koopman operator and dynamic mode decomposition to devise a computationally cheap and easily implementable method to detect transient dynamics and regime changes in time series. We argue that typically transient dynamics experiences the full state space dimension with subsequent fast relaxation towards the attractor. In equilibrium, on the other hand, the dynamics evolves on a slower time scale on a lower dimensional attractor. The reconstruction error of a dynamic mode decomposition is used to monitor the inability of the time series to resolve the fast relaxation towards the attractor as well as the effective dimension of the dynamics. We illustrate our method by detecting transient dynamics in the Kuramoto-Sivashinsky equation. We further apply our method to atmospheric reanalysis data; our diagnostics detects the transition from a predominantly negative North Atlantic Oscillation (NAO) to a predominantly positive NAO around 1970, as well as the recently found regime change in the Southern Hemisphere atmospheric circulation around 1970.</p>

2015 ◽  
Vol 25 (6) ◽  
pp. 1307-1346 ◽  
Author(s):  
Matthew O. Williams ◽  
Ioannis G. Kevrekidis ◽  
Clarence W. Rowley

2020 ◽  
Vol 19 (2) ◽  
pp. 1160-1199
Author(s):  
Arvind Prasadan ◽  
Raj Rao Nadakuditi

2009 ◽  
Vol 641 ◽  
pp. 115-127 ◽  
Author(s):  
CLARENCE W. ROWLEY ◽  
IGOR MEZIĆ ◽  
SHERVIN BAGHERI ◽  
PHILIPP SCHLATTER ◽  
DAN S. HENNINGSON

We present a technique for describing the global behaviour of complex nonlinear flows by decomposing the flow into modes determined from spectral analysis of the Koopman operator, an infinite-dimensional linear operator associated with the full nonlinear system. These modes, referred to as Koopman modes, are associated with a particular observable, and may be determined directly from data (either numerical or experimental) using a variant of a standard Arnoldi method. They have an associated temporal frequency and growth rate and may be viewed as a nonlinear generalization of global eigenmodes of a linearized system. They provide an alternative to proper orthogonal decomposition, and in the case of periodic data the Koopman modes reduce to a discrete temporal Fourier transform. The Arnoldi method used for computations is identical to the dynamic mode decomposition recently proposed by Schmid & Sesterhenn (Sixty-First Annual Meeting of the APS Division of Fluid Dynamics, 2008), so dynamic mode decomposition can be thought of as an algorithm for finding Koopman modes. We illustrate the method on an example of a jet in crossflow, and show that the method captures the dominant frequencies and elucidates the associated spatial structures.


Sign in / Sign up

Export Citation Format

Share Document