koopman operator
Recently Published Documents


TOTAL DOCUMENTS

155
(FIVE YEARS 102)

H-INDEX

16
(FIVE YEARS 5)

Author(s):  
Peichao Mi ◽  
Qingxian Wu ◽  
Yuhui Wang

This paper presents a novel suboptimal attitude tracking controller based on the algebraic Riccati equation for a near-space hypersonic vehicle (NSHV). Since the NSHV’s attitude dynamics is complexly nonlinear, it is hard to directly construct an appropriate algebraic Riccati equation. We design the construction based on the Chebyshev series and the Koopman operator theory, which includes three steps. First, the Chebyshev series are considered to transform the error dynamics of the NSHV’s attitude into a polynomial system. Second, the Koopman operator is used to obtain a series of high-dimensional linear dynamics to approximate each of the polynomial system’s vector fields. In this step, our contribution is to determine a well-posed linear dynamics with the minimal dimension to approximate the original nonlinear vector field, which helps to design the control law and analyze the control performance. Third, based on the high-dimensional dynamics, the NSHV’s attitude error dynamics is separated into the linear part and the nonlinear part, such that the algebraic Riccati equation can be constructed according to the linear part. Then, the suboptimal error feedback control law is derived from the algebraic Riccati equation. The closed-loop control system is proved to be locally exponentially stable. Finally, the numerical simulation demonstrates the effectiveness of the suboptimal control law.


Mathematics ◽  
2021 ◽  
Vol 9 (23) ◽  
pp. 3133
Author(s):  
Jamiree Harrison ◽  
Enoch Yeung

The genetic toggle switch is a well known model in synthetic biology that represents the dynamic interactions between two genes that repress each other. The mathematical models for the genetic toggle switch that currently exist have been useful in describing circuit dynamics in rapidly dividing cells, assuming fixed or time-invariant kinetic rates. There is a growing interest in being able to model and extend synthetic biological function for growth conditions such as stationary phase or during nutrient starvation. As cells transition from one growth phase to another, kinetic rates become time-varying parameters. In this paper, we propose a novel class of parameter varying nonlinear models that can be used to describe the dynamics of genetic circuits, including the toggle switch, as they transition from different phases of growth. We show that there exists unique solutions for this class of systems, as well as for a class of systems that incorporates the microbial phenomena of quorum sensing. Further, we show that the domain of these systems, which is the positive orthant, is positively invariant. We also showcase a theoretical control strategy for these systems that would grant asymptotic monostability of a desired fixed point. We then take the general form of these systems and analyze their stability properties through the framework of time-varying Koopman operator theory. A necessary condition for asymptotic stability is also provided as well as a sufficient condition for instability. A Koopman control strategy for the system is also proposed, as well as an analogous discrete time-varying Koopman framework for applications with regularly sampled measurements.


Mathematics ◽  
2021 ◽  
Vol 9 (19) ◽  
pp. 2495
Author(s):  
Alexandre Mauroy

We consider the Koopman operator theory in the context of nonlinear infinite-dimensional systems, where the operator is defined over a space of bounded continuous functionals. The properties of the Koopman semigroup are described and a finite-dimensional projection of the semigroup is proposed, which provides a linear finite-dimensional approximation of the underlying infinite-dimensional dynamics. This approximation is used to obtain spectral properties from the data, a method which can be seen as a generalization of the Extended Dynamic Mode Decomposition for infinite-dimensional systems. Finally, we exploit the proposed framework to identify (a finite-dimensional approximation of) the Lie generator associated with the Koopman semigroup. This approach yields a linear method for nonlinear PDE identification, which is complemented with theoretical convergence results.


Author(s):  
V. V. Kozlov

Abstract We consider the Koopman operator generated by an invertible transformation of a space with a finite countably additive measure. If the square of this transformation is ergodic, then the orthogonal Koopman operator is a symplectic transformation on the real Hilbert space of square summable functions with zero mean. An infinite set of quadratic invariants of the Koopman operator is specified, which are pairwise in involution with respect to the corresponding symplectic structure. For transformations with a discrete spectrum and a Lebesgue spectrum, these quadratic invariants are functionally independent and form a complete involutive set, which suggests that the Koopman transform is completely integrable.


Mathematics ◽  
2021 ◽  
Vol 9 (18) ◽  
pp. 2188
Author(s):  
Yuzuru Kato ◽  
Jinjie Zhu ◽  
Wataru Kurebayashi ◽  
Hiroya Nakao

The asymptotic phase is a fundamental quantity for the analysis of deterministic limit-cycle oscillators, and generalized definitions of the asymptotic phase for stochastic oscillators have also been proposed. In this article, we show that the asymptotic phase and also amplitude can be defined for classical and semiclassical stochastic oscillators in a natural and unified manner by using the eigenfunctions of the Koopman operator of the system. We show that the proposed definition gives appropriate values of the phase and amplitude for strongly stochastic limit-cycle oscillators, excitable systems undergoing noise-induced oscillations, and also for quantum limit-cycle oscillators in the semiclassical regime.


Mathematics ◽  
2021 ◽  
Vol 9 (17) ◽  
pp. 2075
Author(s):  
Zlatko Drmač ◽  
Igor Mezić ◽  
Ryan Mohr

Inferring the latent structure of complex nonlinear dynamical systems in a data driven setting is a challenging mathematical problem with an ever increasing spectrum of applications in sciences and engineering. Koopman operator-based linearization provides a powerful framework that is suitable for identification of nonlinear systems in various scenarios. A recently proposed method by Mauroy and Goncalves is based on lifting the data snapshots into a suitable finite dimensional function space and identification of the infinitesimal generator of the Koopman semigroup. This elegant and mathematically appealing approach has good analytical (convergence) properties, but numerical experiments show that software implementation of the method has certain limitations. More precisely, with the increased dimension that guarantees theoretically better approximation and ultimate convergence, the numerical implementation may become unstable and it may even break down. The main sources of numerical difficulties are the computations of the matrix representation of the compressed Koopman operator and its logarithm. This paper addresses the subtle numerical details and proposes a new implementation algorithm that alleviates these problems.


Sign in / Sign up

Export Citation Format

Share Document