2D velocity profiles along south- and northwestern Norway: An approach using receiver function analysis and Markov chains

Author(s):  
Marco Brönner ◽  
Claudia Pavez

<p>A receiver function analysis was carried out along two profiles located in north- and southwestern Norway. We selected and processed 801 teleseismic events registered by twelve seismic stations belonging to the 2002-2005 Geofon/Aarhus temporary network. The HK (depth vs Vp/Vs) stacking procedure and a Reversible jump Markov chain Monte Carlo (Rj-McMC) inversion were applied independently with the objective to reveal new crustal and crust-mantle transitional contrasts gaining a better understanding of the geology. In the southern profile, the most noticeable feature corresponds to a Moho offset of about ~5 km ca. 85 km to the east of the Norwegian coast: That feature was previously observed in several occasions and is also well-supported from this research. Furthermore, a very deep Moho discontinuity – at between 45 – 50 km depth - was found beneath the northern profile, approximately 70 km inland from the coast, and dipping about 30° to the northwest. Even when this deep structure was previously inferred through other methods, its presence was not certainly confirmed and so far, the origin of this feature is still disputed. We discuss two hypotheses, which are valid to explain the occurrence of the noticeable anomaly. First, a gradual and wide crust-mantle transition zone, which is also reflected in the velocity model or second, the presence of a paleo-slab of Fennoscandian basement subducted and deformed during the Caledonian Orogen (490-390 Ma).</p>

2020 ◽  
Author(s):  
Claudia Pavez ◽  
Marco Brönner ◽  
Odleiv Olesen ◽  
Arne Bjørlykke

<p>A Receiver Function Analysis was carried out in the Mjøsa area, Eastern Norway, in order to better image this tectonically complex area, understand the crustal contrasts and complement geological analysis that were made previously in the area. For this, we used seismic traces received for seven broadband stations from the NORSAR permanent array. The H-K (depth vs Vp/Vs) stacking procedure and a Reversible jump Markov chain Monte Carlo (Rj-McMC) inversion were developed independently. The first analysis allows us to obtain a model with the Mohorovicic discontinuity values under each seismic station and the average Vp/Vs crustal ratio. With the inversion, it was possible to develop a 1D local velocity model. Applying the Nafe-Drake relationship, a 2D density model was obtained and tested against observed gravity. Results indicate the presence of a low anomalous density layer that is located to the NNW of the study area, which is probably related to low-density meta-sediments in the Åsta Basin located above the basement. A main crustal fault is also indicated from the density model, spatially coinciding with faults grown during the Sveconorwegian orogenic process.</p><p> </p>


2019 ◽  
Vol 71 (1) ◽  
Author(s):  
Aki Ito ◽  
Takashi Tonegawa ◽  
Naoki Uchida ◽  
Yojiro Yamamoto ◽  
Daisuke Suetsugu ◽  
...  

Abstract We applied tomographic inversion and receiver function analysis to seismic data from ocean-bottom seismometers and land-based stations to understand the structure and its relationship with slow slip events off Boso, Japan. First, we delineated the upper boundary of the Philippine Sea Plate based on both the velocity structure and the locations of the low-angle thrust-faulting earthquakes. The upper boundary of the Philippine Sea Plate is distorted upward by a few kilometers between 140.5 and 141.0°E. We also determined the eastern edge of the Philippine Sea Plate based on the delineated upper boundary and the results of the receiver function analysis. The eastern edge has a northwest–southeast trend between the triple junction and 141.6°E, which changes to a north–south trend north of 34.7°N. The change in the subduction direction at 1–3 Ma might have resulted in the inflection of the eastern edge of the subducted Philippine Sea Plate. Second, we compared the subduction zone structure and hypocenter locations and the area of the Boso slow slip events. Most of the low-angle thrust-faulting earthquakes identified in this study occurred outside the areas of recurrent Boso slow slip events, which indicates that the slow slip area and regular low-angle thrust earthquakes are spatially separated in the offshore area. In addition, the slow slip areas are located only at the contact zone between the crustal parts of the North American Plate and the subducting Philippine Sea Plate. The localization of the slow slip events in the crust–crust contact zone off Boso is examined for the first time in this study. Finally, we detected a relatively low-velocity region in the mantle of the Philippine Sea Plate. The low-velocity mantle can be interpreted as serpentinized peridotite, which is also found in the Philippine Sea Plate prior to subduction. The serpentinized peridotite zone remains after the subduction of the Philippine Sea Plate and is likely distributed over a wide area along the subducted slab.


2018 ◽  
Author(s):  
Chengping Chai ◽  
Monica Maceira ◽  
Charles Ammon ◽  
Carene Larmat ◽  
Sridhar Anandakrishnan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document